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1 Introduction
This document describes design techniques for achieving the highest performance with
the Stratix® 10 HyperFlex® device architecture. The Stratix 10 architecture introduces
new Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization design techniques for
Intel FPGAs. Use these techniques to reach the highest clock frequencies in Stratix 10
devices.

• HyperFlex architecture overview—introduces the new Stratix 10 device
architecture and supporting software features

• RTL design guidelines—provides fundamental high-performance RTL design
techniques forStratix 10 designs

• Running Quartus® Prime Pro – Stratix 10 Edition Beta software—describes
compiling for Stratix 10 devices and performance optimization features

• HyperFlex porting guidelines—design preparations to compile and optimize for
Stratix 10 devices

• Design example walk-through—steps through the provided median filter Stratix
10design, analyzes the results, and demonstrates performance improvement
techniques

1.1 HyperFlex Architecture Overview

The centerpiece of the Stratix 10 HyperFlex architecture is the innovative “registers
everywhere” design. This architecture adds bypassable Hyper-Registers to every
routing segment in the Stratix 10 device core, and at all functional block inputs.

Figure 1. Registers Everywhere - HyperFlex Architecture
ALM ALM ALM

ALM ALM ALM
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The Registers Everywhere illustration shows a small section of the Intel FPGA fabric,
with nine ALMs and the interconnect routing that connects the ALMs. The squares at
the intersection of each horizontal and vertical routing segment indicate the Hyper-
Register location.

Figure 2. Bypassable Hyper-Register
The routing signal can bypass the register and go straight to the multiplexer, or go
through the register first. One bit of the Intel FPGA configuration memory (CRAM)
controls this multiplexer.

clk CRAM
Config

1.1.1 Hyper-Aware Design Flow

The Quartus Prime Pro – Stratix 10 Edition Beta software introduces a powerful suite
of integrated capabilities to take full advantage of the HyperFlex architecture and
maximize design productivity.
The Hyper-Aware Design Flow automatically optimizes designs to take advantage of
the HyperFlex architecture. The Fitter anticipates the fine-grained Hyper-Retiming
optimizations that occur in the subsequent retime stage of the Fitter. Therefore, you
can focus the earlier stages of optimization on critical paths that do not benefit as
much from retiming.

To improve design performance, enable more retiming optimizations by removing
retiming restrictions (Hyper-Retiming), adding pipeline stages (Hyper-Pipelining) or
modifying the structure of the design (Hyper-Optimization).
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Figure 3. Hyper-Aware Design Flow
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The Hyper-Registers allow you to use familiar design techniques to increase the
performance of the design beyond other conventional FPGA architectures. As FPGA
process geometries shrink, the interconnect delays between the ALMs become
dominant and limit performance. Locating the Hyper-Registers in the interconnect
routing—where they can best address this issue—is one of the key innovations of the
HyperFlex architecture. When implementing these techniques in Hyper-Registers,
rather than ALMs, the techniques are known as Hyper-Retiming, Hyper-Pipelining, and
Hyper-Optimization.

Use this three-step process to maximize the performance of a design for the
HyperFlex architecture:

Table 1. Three Steps to Maximize HyperFlex Architecture Performance

Step Architecture Advantage Required Changes Core Performance (versus previous-
generation high-performance Intel

FPGA)

1 Hyper-Retiming None, or minor RTL changes 1.4X

2 Hyper-Pipelining Added pipelining 1.6X

3 Hyper-Optimization Design dependent 2x or more

1.1.1.1 Hyper-Retiming

Hyper-Retiming improves the performance of critical paths by moving registers out of
the ALMs and into the interconnect. This technique balances register-to-register
delays, and allows the design to run at a faster clock frequency.
The Fitter automatically performs retiming optimizations to take advantage of the
Hyper-Registers. However, you can enable further retiming optimizations by making
the following types of changes to the RTL to remove retiming restrictions:

• Change the reset strategy to avoid using asynchronous clears

• Modifying timing constraints that prevent retiming

This process requires minimal effort, while resulting in an average performance gain of
1.4X for Stratix 10devices compared to previous generation high-performance FPGAs.

1.1.1.2 Hyper-Pipelining

Hyper-Pipelining eliminates long routing delays by adding additional pipeline stages in
the interconnect between the ALMs. This technique allows the design to run at a faster
clock frequency.

1 Introduction

Stratix 10 High-Performance Design Handbook
6



After you modify the RTL and place the prescribed number of pipeline stages at the
boundaries of each clock domain, the Hyper-Retimer automatically places the registers
within the clock domain at the optimal locations to maximize the performance. The
combination of auto-placement and Fast-Forward Compile helps to automate the
process when compared with conventional pipelining. This process requires minimal
effort, while resulting in an average performance gain of 1.6X for devices compared to
previous generation high-performance FPGAs.

1.1.1.3 Hyper-Optimization

After accelerating data paths through Hyper-Retiming and Hyper-Pipelining, some
designs face limitations of control logic, such as long feedback loops and state
machines. To achieve higher performance, restructure such logic sections to use
functionally equivalent feed-forward or pre-compute paths, rather than long
combinatorial feedback paths.

The effort that Hyper-Optimization requires varies by design characteristics. However,
the technique can result in performance gains in Stratix 10 devices.

1.1.1.4 Fast Forward Compile

Fast Forward Compile guides you through the performance optimization and identifies
performance limiting areas of the design. Fast Forward Compile analyzes the design
and provides detailed recommendations about removing retiming restrictions, about
how many pipeline stages should be added on critical paths, and how the design may
be limited by bottlenecks such as feedback loops in the RTL. Fast Forward compile
provides a summary of the estimated fmax improvement for each of the
recommended changes. Use Fast Forward Compile to easily predict the highest
performance of your Hyper-Optimized design in a Stratix 10 device.

1.1.1.5 Hyper-Aware Algorithms

The Quartus Prime Pro – Stratix 10 Edition Beta software includes Hyper-Aware
algorithms used during synthesis and place-and-route. These algorithms allow the
Compiler to reduce logic resources by predicting which registers can move out of ALMs
and into Hyper-Registers in the interconnect routing.

The suite of HyperFlex architecture features, combines with the Intel 14-nm Tri-Gate
process technology, to enable Stratix 10 FPGAs and SoCs that deliver the highest
levels of performance, density, and power efficiency in programmable logic.

1.2 Acknowledgments

Examples in this document include code from the following OpenCores projects:

• 10_100_1000 Mbps tri-mode Ethernet MAC; by Jon Gao

• 128 bit AES Pipelined Cipher; by Amr Salah

• Turbo Decoder; by David Brochart

The projects are distributed under the LGPL license, and the terms are reproduced
below.

Copyright (C) 2001, 2005 Authors
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This source file may be used and distributed without restriction provided that this
copyright statement is not removed from the file and that any derivative work
contains the original copyright notice and the associated disclaimer.

This source file is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

This source is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this source; if not, download it from http://www.opencores.org/lgpl.shtml
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2 RTL Design Guidelines
This section recommends specific design techniques to achieve the highest clock rates
possible with the HyperFlex architecture and the Hyper-Retimer. Most common
techniques of high-speed design apply to designing for the HyperFlex architecture. In
addition, you must use some new techniques to achieve the highest performance.

Follow these general RTL design guidelines to enable the Hyper-Retimer to optimize
design performance:

• Design in a way that facilitates register retiming by the Hyper-Retimer.

• Use a latency-insensitive design that supports the addition of pipeline stages at
clock domain boundaries, top-level I/Os, and at the boundaries of functional
blocks.

• Restructure RTL to avoid performance-limiting loops.

2.1 HyperFlex Design Philosophy

The Stratix 10 architecture represents a big step forward in maximum clock rate
compared to previous FPGA generations. Migrating to the Stratix 10 architecture
generally requires a review of design best practices to obtain the most benefit from
Stratix 10 FPGAs. However, increasing the speed of your circuitry can produce
dramatic effects.

2.1.1 Set a High-Speed Target

For silicon efficiency, set your speed target as high as possible. The Stratix 10 LUT is
essentially a tiny ROM capable of a billion lookups per second. Operating a Stratix 10
LUT at 156 MHz uses only 15% of the capacity.

While setting a high-speed target, you must also maintain a comfortable guard band
between the speed at which you can close timing, and the actual system speed
required. Addressing the timing closure initially with margin is much easier.

2.1.1.1 Speed and Timing Closure

Timing closure difficulties occur when there is difference between what the circuit can
naturally achieve, and the fMAX requirement of your design. If the capability is
sufficiently high, many possible placements are satisfactory, creating easy timing
closure and short place-and-route runtime.

The timing in a slower circuit is not inherently easier to close than a faster one,
because slow circuits tend to have large amounts of combinational logic between
registers. When there are many nodes on a path, most possible placements involve
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stretching nodes away from each other, resulting in significant routing delay. In
contrast, a heavily pipelined circuit is much less dependent on placement, which
makes closing timing easier, despite the higher speed.

Figure 4. Placement of Deep or Under-Pipelined Paths
Examples of acceptable and slow routing delays.

Acceptable Slow SlowGood

Be realistic about timing margin when building your design. An Intel FPGA comprises a
common pool of physical resources. Portions of the design make contact and distort
one other as logic is added to the system. Adding stress to the system is typically
detrimental to speed. As a design project progresses, there are more ways to slow the
system down than to speed it up. Allowing more timing margin at the start helps
mitigate this problem.

2.1.1.2 Speed and Area or Latency

Running silicon at higher clock rates accomplishes more work with the same resources

The following table illustrates the rate of growth for various types of circuits as the bus
width increases. The circuit functions interleave with big O notations of area as a
function of bus width, starting at sub-linear with log(N), to super-linear with N*N.

Table 2. Effect of Bus Width on Area

Circuit Function

Bus Width (N) log N Mux ripple add N*log N barrel shift Crossbar N*N

16 4 5 16 64 64 80 256

32 5 11 32 160 160 352 1024

64 6 21 64 384 384 1344 4096

128 7 43 128 896 896 5504 16384

256 8 85 256 2048 2048 21760 65536

Most circuit components use more than 2X the area as the bus width doubles. For a
simple circuit like a mux, the area grows sub-linearly as the bus width increases.
Cutting the bus width of a mux in half provides slightly worse linear area benefit. A
ripple adder grows linearly as the bus width increases. More complex circuits, like
barrel shifters and crossbars, grow super-linearly as bus width increases. If you cut
the bus width of a barrel shifter, crossbar, or other complex circuit in half, the area
benefit can be significantly better than half, approaching quadratic rates. For
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components in which all inputs affect all outputs, increasing the bus width can cause
quadratic growth. The expectation is then that, if you take advantage of speed-up to
work on half-width buses, you generate a design with less than half the original area.

When working with streaming datapaths, the number of registers is a fair
approximation of the latency of the pipeline in bits. Reducing the width by half creates
the opportunity to double the number of pipeline stages without negatively impacting
latency. Generally, the amount of additional registering required to go faster is
significantly less than double, creating latency profit.

2.1.2 Experiment and Iterate

Experiment and iterate if your design's performance does not meet your requirements.
The reprogrammability of Intel FPGAs allows you to experiment and optimize until you
achieve your goals. Commonly, a design element's performance gradually becomes
inadequate as requirements change over time. For example, when you apply the
design element to a new context at a wider parameterization, perhaps the speed falls
off.

When experimenting with circuit timing, there is no permanent risk from
experimentation that temporarily breaks the circuit to collect a data point. A common
trick of experienced designers is to add registers illegally to determine the effect on
overall timing. If the candidate circuit begins to meet the timing objective, you can
make further investment to legalize the change. If a circuit remains too slow, even
when taking considerable liberties with registers, you likely must reconsider more
basic elements of the design. Moving up or down a speed grade, or compressing
circuitry in LogicLock Plus regions, are other helpful methods for speed investigation.

2.1.3 Compile Components Independently

Compile the design subcomponents as stand-alone entities to find the trouble spots.
Competition for resources and physical constraints (like pin locations) tend to slow the
overall design performance. Once embedded at a higher level, the block speed may be
the same. However, the speed may never be any faster with other components than
alone. As a margin of safety, establish a bright line rule for the required component
speed. For example, when targeting a 20% timing margin, a component with 19.5%
margin is a failure. You can base the targets on the context. For example, you can
allow a timing margin of 10% for a high-level component representing half the chip.
However, if the rule is not explicit, the margin erodes as 10% becomes 9%, then 6%,
and so on.

Use the Chip Planner to visualize the system level view. The following floorplan shows
a component that uses 5% of the logic on the device (central orange) and 25% of the
M20K blocks (red stripes).
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Figure 5. M20K Spread in Chip Planner

The system level view does not show anything alarming about the resource ratios.
However, there is a great deal of mysterious routing congestion. The orange memory
control logic fans out across a large physical span to connect to all of the memory
blocks. The design functions satisfactorily alone, but struggles when unrelated logic
cells fill up the intervening area. Restructuring this block to physically distribute the
control logic better relieves the high-level problem.

Stand-alone compilation also prepares you for inevitable hardware debug cycles.
Independent, coherent operation of portions of the design is beneficial. This condition
allows test and modification of only those sections, without the runtime and
complexities of the entire system.

2.1.4 Optimize Sub-Modules

During design optimization, you can isolate the critical part in one or two sub-modules
from a large design, and then compile the sub-modules. Compiling part of a design
reduces compile time and allows you to focus on optimization of the critical part.

There are some caveats to this approach that you must be aware of to achieve the
expected results for the entire design. Refer to the Top-Level Considerations section of
the HyperFlex Porting Guidelines chapter for more information.

Related Links

Top-Level Design Considerations on page 98

2.1.5 Avoid Broadcast Signals

Avoid using broadcast signals whenever possible. Broadcast signals are typically high
fan-out control nets and can create large latency differences between paths. This
latency difference increases the difficulty for the Hyper-Retimer to find a suitable
location for registers, and can result in unbalanced delay paths. Use pipelining to
address this issue and duplicate registers to drive broadcast signals.
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Broadcast signals travel a large distance to reach individual registers. Because those
fan-out registers may be spread out in the floorplan, use manual register duplication
to improve placement. When choosing your register duplication technique, use
placement knowledge to maximize benefits. The following figures show two examples
in which the design uses extra registers to help close timing. However, the locations of
the extra registers make the second example more efficient than the first.

Figure 6. Adding a Pipeline Stage to Broadcast Signals
The yellow box indicates extra registers in a module you add to help with timing. The
block broadcasts the output to several transceiver channels. Because the final register
stage fans out to destinations that cover a large physical area of the chip, these extra
registers may not improve timing sufficiently.

D Q

Channel 0

D Q

Channel 1

D Q

Channel n

D Q D Q D Q
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Figure 7. A Better Approach to Pipelining Broadcast Signals
A better approach to pipelining is to duplicate the last pipeline register and place a
copy of the register in the destination module (the transceiver channels in this
example). This method results in better placement and better timing. The
improvement occurs because each channel's pipeline register is placed to help cover
the distance between the last register stage in the yellow module, and the registers in
the transceivers, as needed. In addition to duplicating the last pipeline register, apply
a dont_merge synthesis attribute to avoid merging of the duplicate registers during
synthesis, which eliminates any benefit.

D Q

Channel 0

D Q

Channel 1

D Q

Channel n

D Q

D Q D Q D Q

D Q

The recommendation to manually duplicate some registers may seem to contradict
one of the benefits of the HyperFlex architecture—that you no longer need to manually
insert pipeline registers in optimal locations in the RTL. The Hyper-Retimer runs after
placement and routing and optimizes fMAX performance for the placed and routed
design. In some cases, such as this example, there are still steps you can take
manually to help the placer get a better result. The manual duplication in this example
helps the placer get a better result, and that result is then further optimized by the
Hyper-Retimer.

2.2 Facilitate Register Movement (Hyper-Retiming)

This section discusses facilitating register movement in your design (Hyper-Retiming).
The Hyper-Retimer balances register chains to increase fMAX by retiming some ALM
registers into Hyper-Registers in the routing fabric. The retiming refers to moving the
physical location of design registers to balance the propagation delay between
registers. Retiming also performs sequential optimization by moving registers
backwards and forwards across combinatorial logic. Retiming across node splits and
merges may involve register duplications or merges. By balancing the propagation
delays between each stage in a series of registers, the retiming process shortens the
critical paths, reduces the clock period, and increases the frequency of operation.

2 RTL Design Guidelines

Stratix 10 High-Performance Design Handbook
14



Figure 8. Moving Registers across LUTs
The left side represents the pre-retiming design, where the worst case delay is two
LUTs. The right side represents the retiming design, which shows the worst case delay
is one LUT.
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When the Hyper-Retimer cannot retime a register, this is known as a retiming
restriction. Such restrictions limit the design’s fMAX. Minimize retiming restrictions in
performance-critical parts of your designs to achieve the highest performance.

There are a variety of situations that limit performance. Some limitations relate to
hardware characteristics, software behavior, or the design. Use the following design
techniques to facilitate register retiming and avoid retiming restrictions:

• Avoid asynchronous resets, except where necessary. Refer to the Reset Strategies
section.

• Avoid synchronous clears. Synchronous clears are usually broadcast signals that
are not conducive to the retimer.

• Use targeted wildcards or names in timing constraints and exceptions. Refer to the
Timing Constraint Considerations section.

• Avoid single cycle (stop/start) flow control. Examples are clock enables and FIFO
full/empty signals. Consider using valid signals and almost full/empty,
respectively.

• Avoid preserve or don't touch register attributes. Refer to the Retiming
Restrictions and Workarounds section.

• For information about adding pipeline registers, refer to the Add Pipeline Registers
(Hyper-Pipelining) section.

• For information about addressing loops and other RTL restrictions to retiming,
refer to the Optimize RTL (Hyper-Optimization) section.

Related Links

• Reset Strategies on page 16
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This section recommends techniques to achieve maximum performance with
resets.

• Timing Constraint Considerations on page 23
This section recommends specific timing constraint techniques to maximize
performance.

• esc1445881977928.xml

• Add Pipeline Registers (Hyper-Pipelining) on page 26
This section discusses adding pipeline registers to increase performance.

• Retiming Restrictions and Workarounds on page 90
This section describes RTL design techniques you can use to avoid retiming
restrictions.

2.2.1 Reset Strategies

This section recommends techniques to achieve maximum performance with resets.
For the best performance, avoid resets (asynchronous and synchronous), except when
necessary.

Because Hyper-Registers do not have asynchronous clears, you cannot retime any
register with an asynchronous clear to improve performance.

Using a synchronous clear instead of an asynchronous clear allows the Hyper-Retimer
to retime the register. Refer to the Synchronous Resets and Limitations section for
more detailed information about retiming behavior for registers with synchronous
clears. Some registers in your design require synchronous or asynchronous clears, but
you must minimize the number for best performance.

Related Links

Synchronous Resets and Limitations on page 119

2.2.1.1  Removing Asynchronous Clears

You can remove asynchronous clears if a circuit naturally resets when the reset is held
long enough to reach a steady-state equivalent of a full reset.

The following figure shows Verilog HDL and VHDL examples of common circuits that
implement asynchronous clears for the registers in a processing pipeline.
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Figure 10. Verilog HDL and VHDL RTL Examples with Asynchronous Clears

always @(posedge clk, aclr)
 if (aclr) begin
  reset_synch <= 1'b0;
  aclr_int <= 1’b0;
 end
 else begin
  reset_synch <= 1'b1;
  aclr_int <= reset_synch;
 end

always @(posedge clk, aclr_int)
 if (aclr_int) begin
  a <= 1'b0;
  b <= 1'b0;
  c <= 1'b0;
  d <= 1'b0;
  out <= 1'b0;
 end
 else begin
  a <= in;
  b <= a;
  c <= b;
  d <= c;
  out <= d;
 end

PROCESS(clk, aclr) BEGIN
 IF (aclr = '1') THEN
  reset_synch <= '0';
  aclr_int <= '0';
 ELSIF rising_edge(clk) THEN
  reset_synch <= '1';
  aclr_int <= reset_synch;
 END IF;
END PROCESS;

PROCESS(clk, aclr_int) BEGIN
 IF (aclr_int = '1') THEN
  a <= '0';
  b <= '0';
  c <= '0';
  d <= '0';
  output <= '0';
 ELSIF rising_edge(clk) THEN
  a <= input;
  b <= a;
  c <= b;
  d <= c;
  output <= d;
 END IF;
END PROCESS;

Verilog HDL VHDL

Asynchronous clear clears all registers in the pipeline.
They cannot be placed in Hyper-Registers.

The following figure shows the same circuitry in schematic form, and shows the output
behavior at reset.

Figure 11. Circuit Using Full Asynchronous Reset
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The following figure shows the removal of some of the asynchronous clears from the
middle of the circuit. After a partial reset, if the modified circuit settles to the same
steady state as the original circuit, then the modification is functionally equivalent.
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Figure 12. Circuit Using Partial Asynchronous Reset
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Cases involving inverting logic generally require additional synchronous clears to
remain in the pipeline.

Figure 13. Circuit with an Inverter in the Register Chain
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After removing the reset and applying the clock, the register outputs do not settle to
the reset state, as in the circuit above. Rather, the inverting register cannot have its
asynchronous clear removed to be equivalent to the above circuit after settling out of
reset.
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Figure 14. Circuit with an Inverter in the Register Chain with Asynchronous Clear
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To avoid non-naturally resetting logic because of inverting functions, validate the
output to synchronize with reset removal. Then, as long as the validating pipeline can
enable the output when the computational pipeline is actually valid, the behavior is
equivalent with reset removal. This process is suitable even if the computation portion
of the circuit does not naturally reset.

Figure 15. Validating the Output to Synchronize with Reset
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The next two figures show Verilog HDL and VHDL examples of the circuit shown in 
Figure 12 on page 18. You can apply this example to your design and remove
unnecessary asynchronous resets.
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Figure 16. Verilog HDL Example Using Minimal or No Asynchronous Clears

always @(posedge clk, posedge aclr)
 if (aclr) begin
  reset_synch_1 <= 1'b0;
  reset_synch_2 <= 1'b0;
  aclr_int <= 1'b0;
 end
 else begin
  reset_synch_1 <= 1'b1;
  reset_synch_2 <= reset_synch_1;
  aclr_int <= reset_synch_2;
 end

always @(posedge clk, posedge aclr_int)
 if (aclr_int)
  out <= 1'b0;
 else 
  out <= d;
 
always @(posedge clk)
 if (reset_synch_2)
  a <= 1'b0;
 else
  a <= in;
  
always @(posedge clk) begin
 b <= a;
 c <= b;
 d <= c;
end

Verilog HDL

Asynchronous clear for
output register only

Synchronous clear for
input register only

Naturally resetting registers
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Figure 17. VHDL Example Using Minimal or No Asynchronous Clears

PROCESS (clk, aclr) BEGIN
 IF (aclr = '1') THEN
  reset_synch_1 <= '0';
  reset_synch_2 <= '0';
  aclr_int <= '0';
 ELSIF rising_edge(clk) THEN
  reset_synch_1 <= '1';
  reset_synch_2 <= reset_synch_1;
  aclr_int <= reset_synch_2;
 END IF;
END PROCESS;

PROCESS (clk, aclr_int) BEGIN
 IF (aclr_int = '1') THEN
  output <= '0';
 ELSIF rising_edge(clk) THEN
  output <= d;
 END IF;
END PROCESS;

Asynchronous clear for
output register only

Synchronous clear for
input register only

Naturally resetting registers

PROCESS (clk) BEGIN
 IF rising_edge(clk) THEN
  IF (reset_synch_2 = '1') THEN
   a <= '0';
  ELSE
   a <= input;
  END IF;
 END IF;
END PROCESS;

PROCESS (clk) BEGIN
 IF rising_edge(clk) THEN
  b <= a;
  c <= b;
  d <= c;
 END IF;
END PROCESS;

2.2.1.2  Synchronous Clears on Global Clock Trees

Using a global clock tree to distribute a synchronous clear may limit the Hyper-
Retimer's performance improvements. Global clock trees do not have Hyper-Registers.
As such, there is less flexibility to retime registers that fan out through a global clock
tree compared to the routing fabric.

2.2.1.3  Synchronous Resets on I/O Ports

The Hyper-Retimer does not retime registers driving an output port or being driven by
an input port. If a synchronous clear is on one of these I/O registers, you cannot
retime the register. This restriction is not typical of practical designs in which logic
drives resets. However, this issue may become apparent in benchmarking a smaller
piece of logic, where the reset may come from an I/O port. In this case, you cannot
retime any of the registers that the reset drives. Adding some registers to the
synchronous reset path corrects this condition.

2.2.1.4  Duplicate and Pipeline Synchronous Resets

If a synchronous clear signal causes timing issues, duplicating the synchronous clear
signal between the source and destination registers can resolve the timing issue. The
registers pushed forward need not contend for Hyper-Register locations with registers
being pushed back. For small logic blocks of a design, this method is a valid strategy
to improve timing.
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2.2.2 Clock Enable Strategies

High fan-out clock enable signals can limit the performance achievable by the Hyper-
Retimer. This section provides recommendations for three situations where you can
use clock enables.

2.2.2.1  Localized Clock Enable

The localized clock enable has a small fan-out. The localized clock enable often occurs
in a clocked process or an always block, where the signal’s behavior is undefined
under a particular branch of a conditional case or if statement. As a result, the
signal retains its previous value, which is a clock enable. To check whether a design
has clock enables, view the Fitter Report ➤ Plan Stage Section ➤ Control Signals
Compilation report and check the Usage column. Because the localized clock enable
has a small fan-out, retiming it is quite easy and usually does not cause any timing
issues.

2.2.2.2  High Fan-Out Clock Enable

Avoid a high fan-out signal whenever possible. The high fan-out clock enable feeds a
large amount of logic. The amount of logic is so large that the registers that you
retime are pushing or pulling registers up and down the clock enable path for their
specific needs. This pushing and pulling can result in conflicts along the clock enable
line. This condition is similar to the aggressive retiming in the Synchronous Resets
Summary section. Some of the methods discussed in that section, like duplicating the
enable logic, are also beneficial in resolving conflicts along the clock enable line.

You typically use these high fan-out signals to disable a large amount of logic from
running. These signals might occur when a FIFO’s full flag goes high. You can often
design around these signals. For example, you can design the FIFO to specify almost
full a few clock cycles earlier, and allow the clock enable a few clock cycles to
propagate back to the logic it disables. You can retime these extra registers into the
logic if necessary.

Related Links

Synchronous Resets Summary on page 121

2.2.2.3  Clock Enable with Timing Exceptions

Another consideration is for clock enable logic accompanied by multicycle and false
path (occasionally) timing constraints. Clock enables are sometimes used to create a
sub-domain that runs at half or quarter the rate of the main clock. Sometimes these
clock enables control a single path with logic that changes every other cycle. However,
the Hyper-Retimer does not retime registers that are endpoints of these timing
exceptions. Because you typically use timing exceptions to relax timing, this case is
less of an issue. If a clock enable validates a long and slow data path, and the path
still has trouble meeting timing, consider adding a register stage to the data path.
Also consider removing the multicycle timing constraint on the path. The Hyper-Aware
CAD flow allows the retimer to retime the path to improve timing.
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2.2.3 Synthesis Attributes

Your design may include registers with synthesis attributes such as preserve or
dont_touch. The Hyper-Retimer does not retime registers with preserve or
dont_touch attributes, because it respects the directive to prevent optimization.
Consider whether you can remove the directives and allow the Hyper-Retimer to
retime affected registers. If you preserve a register for debugging observability,
consider keeping the preserve attribute. If you preserve a register to manage
register duplication, consider using dont_merge instead.

If you use the maxfan synthesis attribute, there is a side effect of applying a
preserve attribute to the duplicated registers, which prevents the Hyper-Retimer
from retiming the registers. You can remove the maxfan attribute and evaluate the
performance without the attribute. Alternatively, you can remove the attribute and
specify the Maximum Fan-Out assignment in the Quartus Settings File (.qsf), which
does not have the side effect.

2.2.4 Timing Constraint Considerations

This section recommends specific timing constraint techniques to maximize
performance.

Synopsys Design Constraints (.sdc) and exceptions, such as false paths and
multicycle paths, restrict the retiming optimizations of the Hyper-Retimer. The Hyper-
Retimer does not retime registers that are the endpoints of an SDC constraint. Define
any constraints or exceptions as specific as possible to avoid Hyper-Retimer
restrictions.

2.2.4.1 Design Considerations for Multicycle Paths

This section describes special considerations for designs that include logic with
multicycle exceptions. For example, your design may contain complex combinational
logic that takes more than one clock cycle to process data. Some CRCs and arithmetic
functions may include multicycle timing paths. You can reuse these modules and
constraints unchanged in designs targeting Stratix 10 devices. However, the Hyper-
Retimer does not retime registers that are endpoints of timing exceptions. Therefore,
using actual register stages and removing the multicycle exception allows the Hyper-
Retimer the most flexibility to improve performance.

For example, if you set up combinational logic with a multicycle exception of 3, you
can remove the multicycle exception and insert two extra register stages before or
after the combinational logic. This change allows the Hyper-Retimer to balance the
extra register stages optimally through the logic.

2.2.4.2 Overconstraints

One timing closure technique is to add overconstraints to make the Fitter work harder
on certain parts of a design. You may inadvertently limit the performance
improvement if you use register-to-register overconstraints, because the Hyper-
Retimer does retime registers that are the endpoints of an SDC constraint or
exceptions. Overconstraints may be appropriate in some situations to improve
performance. If you use overconstraints, do so sparingly as they may limit the
achievable performance of the Hyper-Retimer. You may achieve higher performance
without the overconstraint.
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2.2.5 Clock Synchronization Strategies

Use a simple synchronization strategy to reach maximum speeds in the Stratix 10
architecture. Adding latency on paths with simple synchronizer crossings is
straightforward. However, adding latency on other crossings is more complex.

The following figure shows a straightforward synchronization scheme in which the path
goes from one register of the first domain (blue), directly to a register of the next
domain (red).

Figure 18. Simple Clock Domain Crossing

To add latency in the red domain for retiming, add registers as shown.

Figure 19. Simple Clock Domain Crossing After Adding Latency

The following figure shows a domain crossing structure that is not recommended for
use in Stratix 10 designs, but may exist in designs that target other device families:

• The design contains some combinational logic between the blue clock domain and
the red clock domain. This logic is not properly synchronized and you cannot add
registers flexibly.

• The blue clock domain drives the combinational logic and the logic contains paths
that are launched on the red domain.

Figure 20. Clock Domain Crossing at Multiple Locations

In this case, you can add latency at the boundary of the red clock domain as shown in
the figure below, as long as you do not add registers on a red to red domain path.
Otherwise, the paths become unbalanced, potentially breaking the design
functionality. Although technically possible, it is risky to add latency in this scenario.
Before doing so, thoroughly analyze the various paths.
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Figure 21. Clock Domain Crossing at Multiple Locations After Adding Latency

For Stratix 10 designs, synchronize the clock crossing paths before entering
combinational logic. Adding latency is then more simple compared to the previous
example.

In the following figure, the blue domain registers are synchronized to the red domain
before entering the combinational logic. This design allows you to safely add extra
pipeline registers in front of synchronizing registers without risking touching a red-red
path inadvertently. This approach is the recommended synchronization method to take
maximum advantage of the Stratix 10 architecture performance.

Figure 22. Improved Clock Domain Synchronization
Recommended synchronization method to take maximum advantage of the Stratix 10
architecture.

2.2.6 Synchronizers

The Quartus Prime compilation flow detects registers that are part of a synchronizer
chain. The Fitter tries to optimize those registers to increase the mean time between
failure (MTBF) for Metastability. The Hyper-Retimer does not retime the registers
detected as part of a synchronizer chain. Therefore, to provide more flexibility for
retiming, consider adding more pipeline registers at clock domain boundaries.
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2.3 Add Pipeline Registers (Hyper-Pipelining)

This section discusses adding pipeline registers to increase performance. A proven way
to increase fMAX is to have a lot of registers and evenly distribute them throughout the
circuit. At the high performance limit, a circuit has only one level of combinational
logic between registers. If the register-to-combinational logic ratio is sufficient, the
retimer can balance the registers to produce a design that is close to this ideal circuit.

Use Fast Forward Compilation during the design cycle to identify circuit boundaries
that benefit from additional pipeline stages. Adding registers is much easier if you plan
ahead to accommodate additional latency in your design. For more information about
Fast Forward Compile, refer to the Using Fast Forward Compilation section.

At the most basic level, planning for additional latency means using parameterizable
pipelines at the inputs and outputs of the clock domains in your design. For example,
if Fast Forward Compile recommends adding two pipeline stages at an input bus, you
can adjust a parameter and recompile. Refer to the Appendix: Pipelining Examples
section for pre-written parameterizable pipeline modules in Verilog HDL, VHDL, and
SystemVerilog.

Changing latency is more complicated than just adding pipeline stages. You might
have to rework control logic, and other parts of the design or system software, to
work properly with data arriving later. Making such changes could be difficult in
existing RTL, but it may be easier in new parts of a design. Rather than hard-coding
block latencies into control logic, try to make some of them parameters. In some
types of systems, you may be able to add a “valid data” flag to pipeline stages in a
processing pipeline and use that to trigger various computations, instead of relying on
a high-level fixed concept of when data is valid.

Additional latency may also require changes to testbenches. When you create
testbenches, use the same techniques you use to create latency-insensitive designs.
Do not rely on a result becoming available in a predefined number of clock cycles, but
consider checking a “valid data” or “valid result” flag.

Latency-insensitive design is not appropriate for every part of a system. Interface
protocols that specify a number of clock cycles for data to become ready or valid must
conform to those requirements and may not be able to accommodate changes in
latency.

Related Links

• Using Fast Forward Compilation on page 65
This section describes using Fast Forward Compilation to guide you through the
performance optimization process.

• Appendix: Parameterizable Pipeline Modules on page 50

2.3.1 Conventional versus Hyper-Pipelining

This section describes how Hyper-Pipelining simplifies this process of conventional
pipelining.

Conventional pipelining applies the following design modifications:
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• Add two registers between logic clouds

• Modify HDL to insert a third register (or pipeline stage) into the design’s logic
cloud, which is Logic Cloud 2. This register insertion effectively creates Logic Cloud
2a and Logic Cloud 2b in the HDL

Figure 23. Conventional Pipelining User Modifications
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Hyper-Pipelining simplifies this process of adding registers. For the same design
illustrated in the above figure, you add the registers—Pipe 1, Pipe 2, and Pipe 3—in
aggregate at one location in the design RTL. Then, during design compilation, the
Hyper-Retimer retimes the registers throughout the circuit to find the optimal
placement along the path, as shown in the following figure. This optimization reduces
path delay and maximizes the design's operating frequency.

Figure 24. Hyper-Pipelining User Modifications
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The following figure shows implementation of additional registers after the Hyper-
Retimer compilation stage has completes optimization of the design.

Figure 25. Hyper-Pipelining and Hyper-Retimer Implementation
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The resulting implementation in the Hyper-Pipelining flow differs from the conventional
pipelining flow by the location of the Pipe 3 register. Because the Hyper-Retimer is
aware of the current circuit implementation, including routing, it can more effectively
locate the added aggregate registers to meet the design’s maximum operating
frequency. As shown in this example, Hyper-Pipelining requires significantly less effort
than conventional pipelining techniques because you can place registers at a
convenient location in a data path, and the compiler optimizes the register placements
automatically.

2.3.2 Pipelining and Latency

Adding pipeline registers in a design increases the number of clock cycles necessary
for a signal value to propagate through the design. Increasing the clock frequency can
offset the increased latency.
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Consider a design for a previous generation FPGA, with a 275 MHz fMAX requirement.
In the following figure, the path on the left achieves 286 MHz, limited by the 3.5 ns
delay. Data takes three cycles to propagate through the register pipeline. Three cycles
at 275 MHz is 10.909 ns to propagate through the pipeline.

Figure 26. Hyper-Pipeline Reduced Latency
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Assume that the design is being retargeted to a Stratix 10 device, and the fMAX
requirement has doubled to 550 MHz. The path on the right in the above figure shows
an additional pipeline stage that has been added and retimed, and the path now
achieves 555 MHz, limited by the 1.8 ns delay. The data takes four cycles to propagate
through the register pipeline. Four cycles at 550 MHz is 7.273 ns to propagate through
the pipeline.

If your goal is to maintain the time to propagate through the pipeline with four stages
compared to three, you could meet the 10.909 ns delay of the first version by
increasing the fMAX of the second version to 367 MHz, a 33% increase from 275 MHz.

2.3.3 Use Registers Instead of Multicycle Exceptions

Sometimes designs contain modules with complex combinational logic (such as CRCs
and other arithmetic functions) that can take more than one clock cycle to process.
These modules are constrained with multicycle exceptions, to relax the timing
requirements through the block. You can reuse these modules and constraints
unchanged in designs targeting Stratix 10 devices. Refer to the Design Considerations
for Multicycle Paths section for more information.

You can insert a number of register stages in one convenient place in a module, and
the Hyper-Retimer balances them automatically for you. For example, if you have a
CRC function to pipeline, you do not need to identify the optimal decomposition and
intermediate terms to register. Add the registers at its input or output, and the Hyper-
Retimer can balance them.

Related Links

• Design Considerations for Multicycle Paths on page 23
This section describes special considerations for designs that include logic with
multicycle exceptions.

• Appendix: Parameterizable Pipeline Modules on page 50

2.4 Optimize RTL (Hyper-Optimization)

This section describes multiple RTL restructuring techniques to improve performance.
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2.4.1 Deciding When to Rewrite the RTL

Often you have an existing RTL design that requires optimization to meet a new
performance target. How do you decide between modifying or completely rewriting the
RTL? The Quartus Prime Fast Forward Compile feature helps you make the decision.
For information about running Fast Forward Compile, refer to the Using Fast Forward
Compilation section.

If even Fast Forward Compile performance is significantly below your target, consider
redesigning parts of your circuit. If the Fast Forward Compile performance is above
your target, it is feasible to achieve the target, although you may be unable to
implement some of the recommendations required to achieve this performance.

When you decide to rewrite the RTL, plan an appropriate implementation. Because
adding pipelining stages is a common Hyper-Optimization step, choose a design style
that allows you to accommodate varying amounts of latency. Using parameters to
define and express the latency of blocks can be an effective way to retain design
flexibility.

For more suggestions, refer to the Experiment and Iterate section.

Related Links

• Using Fast Forward Compilation on page 65
This section describes using Fast Forward Compilation to guide you through the
performance optimization process.

• Experiment and Iterate on page 11
Experiment and iterate if your design's performance does not meet your
requirements.

2.4.2  General Optimization Techniques

Use the general RTL techniques this section describes to optimize the design for the
HyperFlex architecture and the Hyper-Retimer.

2.4.2.1 Shannon’s Decomposition

Shannon’s decomposition plays a role in Hyper-Optimization. Shannon’s
decomposition, or Shannon’s expansion, is a way of factoring a Boolean function. You
can express a function as F = x.Fx + x′Fx′ where x.Fx and x′Fx′ are the positive and
negative co-factors of the function F with respect to x. You can factor a function with
four inputs as, (a, b, c, x) = x.(a, b, c, 1) + x′.F(a, b, c, 0), as shown in the following
diagram.
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Figure 27. Shannon's Decomposition
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Logic synthesis can take advantage of the constant-driven inputs and slightly reduce
the cofactors, as shown in the following diagram.

Figure 28. Shannon's Decomposition Logic Reduction
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In Hyper-Optimization, the advantage of Shannon’s decomposition is that it pushes
the x signal to the head of the cone of input logic, making the x signal the fastest path
through the cone of logic. The x signal becomes the fastest path at the expense of all
other signals. Using Shannon’s decomposition also doubles the area cost of the
original function.

The following diagram shows how you can repeatedly use Shannon's decomposition to
decompose functions with more than one critical input signal, thus increasing the area
cost.
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Figure 29. Repeated Shannon's Decomposition

a
b
c F X

a
b
c F X

x

1
0

a
b

F X

a
b

F X

x

1
0

a
b

F X

a
b

F X

x

1
0

c

1
0

Shannon’s decomposition can be an effective optimization technique for loops. When
you perform Shannon’s decomposition on logic in a loop, the logic in the loop moves
outside the loop. The Hyper-Retimer can now pipeline the logic moved outside the
loop.

The following diagram shows a loop that contains a single register, four levels of
combinational logic, and an additional input. Adding registers in the loop changes the
functionality, but you can move the combinational logic outside the loop by performing
Shannon’s decomposition.

Figure 30. Loop Example before Shannon's Decomposition

Cannot Be Pipelined

The output of the register in the loop is 0 or 1. You can duplicate the combinational
logic that feeds the register in the loop, tying one copy’s input to 0 and the other
copy’s input to 1. The register in the loop then selects one of the two copies, as shown
in the following diagram.
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Figure 31. Loop Example after Shannon's Decomposition

Can Be Pipelined

0

1

0

1

Cannot Be
 Pipelined

Performing Shannon’s decomposition on the logic in the loop reduces the amount of
logic in the loop. The Hyper-Retimer can now perform Hyper-Retiming or Hyper-
Pipelining on the logic removed from the loop, and increase the circuit performance.

2.4.2.1.1  Shannon’s Decomposition Example

The sample circuit adds or subtracts an input value from the internal_total value
based on its relationship to a target value. The core of the circuit is the target_loop
module, shown in the following example.

Example 1. Source Code before Shannon's Decomposition

module target_loop (clk, sclr, data, target, running_total);
parameter WIDTH = 32;

input clk;
input sclr;
input [WIDTH-1:0] data; 
input [WIDTH-1:0] target; 
output [WIDTH-1:0] running_total; 

reg [WIDTH-1:0] internal_total; 

always @(posedge clk) begin
        if (sclr)
        begin
             internal_total <= 0;
        end
        else begin
          internal_total <= internal_total + ((( internal_total > target) ? -
data:data)* target/4));
        end
end
assign running_total = internal_total;
end module 

The module uses a synchronous clear, based on the recommendations to enable
Hyper-Retiming.

The following figure shows the Fast Forward Compile report for the target_loop
module instantiated in a register ring.
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Figure 32. Fast Forward Compile Report before Shannon’s Decomposition

The Hyper-Retimer achieves about 248 MHz by adding a pipeline stage in the Fast
Forward Compile. The Limiting Reason column indicates that the critical chain is a
loop. Examining the critical chain report reveals that there is a repeated structure in
the chain segments. The repeated structure is shown as an example in the Optimizing
Loops section.

The following diagram shows a structure that implements the expression in the
previous example code. The functional blocks correspond to the comparison, addition,
and multiplication operations. The zero in each arithmetic block’s name is part of the
synthesized name in the netlist. The zero is because the blocks are the first zero-
indexed instance of those operators created by synthesis.

Figure 33. Elements of a Critical Chain Sub-Loop
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This expression is a candidate for Shannon’s decomposition. Instead of performing
only one addition with the positive or negative value of data, you can perform the
following two calculations simultaneously:

• internal_total - (data * target/4)

• internal_total + (data * target/4)

You can then use the result of the comparison internal_total > target to select
which calculation result to use. The modified version of the code that uses Shannon’s
decomposition to implement the internal_total calculation is shown in the
following example.

Example 2. Source Code after Shannon's Decomposition

module target_loop_shannon (clk, sclr, data, target, running_total);
  parameter WIDTH = 32;

input clk;
input sclr;
input [WIDTH-1:0] data;
input [WIDTH-1:0] target;
output [WIDTH-1:0] running_total;

reg [WIDTH-1:0] internal_total;
wire [WIDTH-1:0] total_minus;
wire [WIDTH-1:0] total_plus;

assign total_minus = internal_total - (data * (target / 4));
assign total_plus = internal_total + (data * (target / 4));

always @(posedge clk) begin
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  if (sclr)
  begin 
     internal_total <= 0;
  end
  else begin
     internal_total <= (internal_total > target) ? total_minus:total_plus);
  end
end

assign running_total = internal_total;
endmodule

As shown in the following figure, the performance almost doubles after recompiling
the design with the code change.

Figure 34. Fast Forward Compile Report after Shannon's Decomposition

2.4.2.1.2  Identifying Circuits for Shannon’s Decomposition

The circuits in which you can rearrange many inputs to control the final select stage
are good candidates for Shannon's decomposition. Be aware of the new logic depths
while restructuring logic to use a subset of the inputs to control the select stage.
Ideally, the logic depth to the select signal is similar to the logic depth to the selector
inputs. Practically, there is a difference in the logic depths because it is difficult to
perfectly balance the number of inputs feeding each cloud of logic.

Another candidate for Shannon’s decomposition is a circuit with only one or two
signals in the cone of logic that are truly critical, and others are static, or with clearly
lower priority.

Shannon’s decomposition can incur a significant area cost, especially if the function is
complex. There are other optimization techniques that have a lower area cost, as
described in this document.

2.4.2.2  Time Domain Multiplexing

Time domain multiplexing increases circuit throughput by using multiple threads of
computation. This technique is also known as C-slow retiming, or multithreading.

This technique replaces each register in a circuit by a set of C registers in series. Each
extra copy of registers creates a new computation thread. One computation through
the modified design takes C times as many clock cycles as the original circuit.
However, the Hyper-Retimer can retime the additional registers to improve the fMAX by
a factor of C. For example, instead of instantiating two modules running at 400 MHz,
you can instantiate one module running at 800 MHz.

The following set of diagrams shows the process of C-slow retiming, beginning with an
initial circuit.

Figure 35. C-slow Retiming Starting Point
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You edit the RTL design to replace every register, including registers in loops, with a
set of C registers, made up of one register per independent thread of computation. If
you replaced each register with two registers, the circuit is as shown in the following
figure.

Figure 36. C-slow Retiming Intermediate Point

Compile the circuit at this point. When the Hyper-Retimer optimizes the circuit, it has
more flexibility to perform Hyper-Retiming with the additional registers. The optimized
circuit is as shown in the following figure.

Figure 37. C-Slow Retiming Ending Point

In addition to replacing every register with a set of registers, you must also multiplex
the multiple input data streams into the block, and demultiplex the output streams out
of the block.

2.4.2.2.1 Identifying Time Domain Multiplexing Optimization Opportunities

Use time domain multiplexing when a design includes multiple parallel threads, each
limited by a loop. The module being optimized must not be sensitive to latency.

2.4.2.3 Loop Unrolling

Loop unrolling moves logic out of the loops, and into feed-forward flows. You can
further optimize the logic with additional pipeline stages.

2.4.2.4 Precomputation

Precomputation is one of the easiest and most beneficial techniques for optimizing
overall design speed. When confronted with critical logic, verify whether the signals
the computation implies are available earlier. Always compute signals as early as
possible to keep these computations outside of critical logic.

When trying to keep critical logic outside your loops, try precomputation first. The
Compiler cannot optimize logic within a loop easily using retiming only. Registers
inside the loop cannot be moved outside of it; registers outside the loop cannot be
retimed into the loop. Therefore, keep the logic inside the loop as small as possible so
that it does not negatively impact your fMAX.

The following figure shows a FIFO block diagram before and after precomputation. The
diagram before precomputation depicts a payload going through a FIFO to some
computational logic. The computational logic then sends control signals back to the
FIFO for processing. If the loop created by the FIFO and calculation logic is large and
depends on multiple signals, instead precompute the results to minimize the
calculation logic.
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After precomputation, logic is minimized in the loop and the design precomputes the
encodings. The calculation is outside of the loop, and you can optimize it with
pipelining or retiming. You cannot remove the loop, but can better control the effect of
the loop on the design speed.

Figure 38. Restructuring a Design with an Expensive Loop
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The following code example shows a similar problem. The original loop contains
comparison operators.

StateJam:if
        (RetryCnt <=MaxRetry&&JamCounter==16)
            Next_state=StateBackOff;
        else if (RetryCnt>MaxRetry)
            Next_state=StateJamDrop;
        else
            Next_state=Current_state;

Precomputing the values of RetryCnt<=MaxRetry and JamCounter==16 removes
the expensive computation from the StateJam loop and replaces it with simple
boolean operations. The modified code is:

reg RetryCntGTMaxRetry;
reg JamCounterEqSixteen; 
StateJam:if
        (!RetryCntGTMaxRetry && JamCounterEqSixteen)
            Next_state=StateBackOff;
        else if (RetryCntGTMaxRetry)
            Next_state=StateJamDrop;
        else
            Next_state=Current_state; 
        always @ (posedge Clk or posedge Reset)
        if (Reset)
            JamCounterEqSixteen <= 0;
        else if (Current_state!=StateJam)
            JamCounterEqSixteen <= 0;
        else 
            JamCounterEqSixteen <= (JamCounter == 15) ? 1:0; 
        always @ (posedge Clk or posedge Reset)
        if (Reset)
            RetryCntGTMaxRetry <= 0;
        else if (Current_state==StateSwitchNext)
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            RetryCntGTMaxRetry <= 0;
        else if (Current_state==StateJam&&Next_state==StateBackOff)
            RetryCntGTMaxRetry <= (RetryCnt >= MaxRetry) ? 1: 0;

2.4.3 Specific Design Structures

This section describes common performance bottleneck structures, and
recommendations to improve fMAX performance for each case.

2.4.3.1 Restructuring Loops

Many restructuring techniques target loops, which fundamentally limit performance. A
loop is a feedback path in a circuit. Loops may be simple and short, with a small
amount of combinational logic on a feedback path. Loops may be much more complex,
potentially going through multiple other registers on the way back to the original
register. All useful circuits contain loops.

Loops limit performance because adding pipeline stages in a loop changes its
functionality. The Hyper-Retimer never retimes registers into a loop. However, you can
change RTL to restructure loops to improve performance. Perform loop optimizations
after analyzing performance bottlenecks with Fast Forward Compile. You can also
apply these techniques proactively as you write new RTL, to maximize performance
potential. You can also use these techniques to improve performance in existing RTL,
especially when you review performance bottlenecks in the Hyper-Retimer reports.

The following sections describe these techniques.

2.4.3.2 Control Signal Backpressure

This section describes RTL design techniques to control signal backpressure. The
Stratix 10 architecture is extremely efficient at streaming data. Because the
architecture supports very high clock rates, it is difficult to send feedback signals to
reach large amounts of logic in one clock cycle. Inserting extra pipeline registers has
the side effect of increasing backpressure on control signals. Data must flow forward
as much as possible.

Figure 39. Control Signal Backpressure
Single clock cycle control signals create loops that can prevent or reduce the
effectiveness of pipelining and register retiming. This example depicts a ready signal
that notifies the upstream register of readiness to consume data. The ready signals
must freeze multiple data sources at the same time.

I Am Not Ready for the Next Data

Modifying the original RTL to add a small FIFO buffer that relieves the pressure
upstream is a straightforward process. When the logic downstream of this block is not
ready to use the data, the FIFO stores the data.
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Figure 40. Using a FIFO Buffer to Control Backpressure
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The goal is for data to reach the FIFO buffer every clock cycle. An extra bit of
information decides whether the data is valid and should be stored in the FIFO buffer.
The critical signal now resides between the FIFO buffer and the downstream register
that consumes the data. This loop is much smaller. You can now use pipelining and
register retiming to optimize the section upstream of the FIFO buffer.

2.4.3.3 Flow Control with FIFO Status Signals

Because of the high clock speeds achievable by Stratix 10 devices, use extra care
when dealing with flow control signals. This practice is particularly important with
signals that gate a data path in multiple locations at the same time. For example, this
practice is important with clock enable or FIFO full/empty signals. Instead of working
with immediate control signals, use a delayed signal. Looking at the FIFO example,
one can build a buffer within the FIFO block. The control signals indicate to the
upstream data path that it is almost full, leaving a few clock cycles for the upstream
data to receive their gating signal. This approach alleviates timing closure difficulties
on the control signals.

When you use FIFO full and empty signals, you must process these signals in one
clock cycle to prevent overflow or underflow.

Figure 41. FIFO Flow Control Loop
The loop is formed while reading control signals from the FIFO.
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If you use an almost full or almost empty signal instead, you can add pipeline
registers in the flow control loop. The lower you make the almost full threshold, and
the higher you make the almost empty threshold, the more registers you can add to
the signal.

The following example has two extra registers in the full control flow signal. When the
FIFO block signals that it is nearly full, the circuit requires two clock cycles to stop the
data flow. Size the FIFO block to allow for proper storage of those extra valid data.
The extra two pipeline registers in the control path help with routing, and enable
higher speed than with traditional single-cycle FIFO control scheme.
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Figure 42. Improved FIFO Flow Control Loop with Almost Full instead of Full FIFO
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You can use skid buffers to pipeline a FIFO. If necessary, you can cascade skid buffers.
When you insert skid buffers, they unroll the loop that includes the FIFO control
signals. The skid buffers do not eliminate the loop in the flow control logic, but the
loop transforms into a series of shorter loops. In general, switch to almost empty and
almost full signals instead of using skid buffers.

Figure 43. FIFO Flow Control Loop with Two Skid Buffers in a Read Control Loop

FIFO

empty

data

empty

read
read_req

If you have loops involving FIFO control signals, and they are broadcast to many
destinations for flow control, you should carefully consider whether there is a way to
eliminate the broadcast signals. Pipeline broadcast control signals, and use almost full
and almost empty status bits from FIFOs.

2.4.3.4 Read-Modify-Write Memory

Wireline networking applications often require updating counter values every clock
cycle. This process is challenging because the number of queues and counters
increases along with bandwidth requirements. If you pipeline a counter update over
multiple clock cycles, maintain a cache to track recent activity with a particular
counter. As you increase the number of cycles to update the value, the amount of logic
required to handle caching and data combination increases, and can be difficult to
scale. Loops are inherent in the logic for the cache, and they can be difficult to
optimize.

A technique to improve performance, without extra complexity, is to break the
modification operation into smaller blocks that can be completed in one clock cycle.
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Figure 44. Pipelining Read-Modify-Write Memory
This figure shows a method to pipeline a read-modify-write memory to improve
performance without maintaining a cache for tracking recent activity.

Data words are split into multiple n-bit chunks, where each chunk is small enough to
be processed efficiently in one clock cycle. For the best performance, each chunk must
be no wider than one M20K memory block.

A loop in a read-modify-write circuit is unavoidable because of the nature of the
circuit, but the loop in this solution is small and short. This solution is scalable,
because the underlying structure remains unchanged regardless of the number of
pipeline stages. If you need higher fMAX, increase the number of memory blocks, use
narrower memory blocks, and increase the latency. If you need lower latency, use
fewer, wider memory blocks, and remove pipeline stages appropriately.

2.4.3.5 Counters and Accumulators

Performance-limiting loops occur rarely in small, simple counters. Counters with
unnatural rollover conditions (not a power of two), or irregular increments, are more
likely to have a performance-limiting critical chain. When a performance-limiting loop
occurs in a small counter (roughly 8 bits or less), write the counter as a fully decoded
state machine, depending on all the inputs that control the counter. The counter still
contains loops, but they are smaller, and not performance-limiting. When the counter
is small (roughly 8 bits or less), the fitter implements it in a single LAB. This
implementation makes the counter fast because all the logic is placed close together.

You can also use loop unrolling to improve counter performance.
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Figure 45. Counter and Accumulator Loop
In a counter and accumulator loop, a register's new value depends on its old value.
This includes variants like LFSRs (linear feedback shift register) and gray code
counters.
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2.4.3.6  State Machines

Loops due to state machines can be difficult to optimize. Carefully examine the state
machine logic to determine whether you can precompute any signals used in the next
state logic.

To effectively pipeline the state machine loop, consider adding skips states to a state
machine. Skips states are states added to allow more transition time between two
adjacent states.

To optimize state machine loops, sometimes it may be necessary to write a new state
machine.

Figure 46. State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.
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Related Links

Precomputation on page 35
Precomputation is one of the easiest and most beneficial techniques for optimizing
overall design speed.

2.4.3.7 Memory

The section covers various topics about optimization for hard memory blocks in Stratix
10 devices.
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2.4.3.7.1 True Dual-Port Memory

Stratix 10 devices support true dual-port memory structures. True Dual Port Memories
allow you to perform two write and two read operations at once.

Stratix 10 embedded memory components (M20k) have slightly different modes of
operation compared to previous device technology. Consider differences in the
following areas for Stratix 10 designs:

• True dual-port memory

• Mixed-width ratio for read/write access

Stratix 10 devices do not support true dual-port memories in independent clock mode.
However, Stratix 10 devices fully support true dual-port memories in single clock
mode with an operation frequency of up to 1 GHz.

2.4.3.7.2 Use Simple Dual-Port Memories

When migrating a design to a Stratix 10 device, consider whether your original design
contains a dual-port memory that uses different clocks on each port. If your design is
actually using the same clock on both write ports, you can restructure it using two
simple dual clock memories.

The advantage of this method is that the simple dual-port blocks can support
frequencies up to 1 GHz. The disadvantage is the doubling of the number of memory
blocks required to implement your memory.

Figure 47. Arria® 10 True Dual-Port Memory Implementation
Quartus Prime Pro Edition version 16.1 generates this true dual-port memory
structure for Arria® 10 devices.

Example 3. Dual Port, Dual Clock Memory Implementation

module true_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
    input [(DATA_WIDTH-1):0] data_a, data_b,
    input [(ADDR_WIDTH-1):0] addr_a, addr_b,
    input we_a, we_b, clk_a, clk_b,
    output reg [(DATA_WIDTH-1):0] q_a, q_b
);

    // Declare the RAM variable
    reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];
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    always @ (posedge clk_a)
    begin
        // Port A 
        if (we_a) 
        begin
            ram[addr_a] <= data_a;
            q_a <= data_a;
        end
        else 
        begin
            q_a <= ram[addr_a];
        end 
    end

    always @ (posedge clk_b)
    begin
        // Port B 
        if (we_b) 
        begin
            ram[addr_b] <= data_b;
            q_b <= data_b;
        end
        else 
        begin
            q_b <= ram[addr_b];
        end 
    end

endmodule

Synchronizing dual-port memory that uses different write clocks can be difficult.
Ensure that both ports do not simultaneously write to a given address. In many
designs the dual-port memory often performs a write operation on one of the ports,
followed by two read operations using both ports (1W2R). You can model this behavior
by using two simple dual-port memories. In simple dual-port memories, a write
operation always writes in both memories, while a read operation is port dependent.

Simple Dual-Port Memory Example

Using two simple dual-port memories can double the use of M20K blocks in the device.
However, this memory structure can perform at a frequency up to 1 GHz. This
frequency is not possible when using true dual-port memory with independent clocks
in Stratix 10 devices.
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Figure 48. Simple Dual-Port Memory Implementation

You can achieve similar frequency results by inferring simple dual-port memory in RTL,
rather than by instantiation in the Quartus Prime Pro – Stratix 10 Edition Beta GUI.

Example 4. Simple Dual-Port RAM Inference

module simple_dual_port_ram_with_SDPs
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(
        input [(DATA_WIDTH-1):0] wrdata,
        input [(ADDR_WIDTH-1):0] wraddr, rdaddr,
        input we_a, wrclock, rdclock,
        output reg [(DATA_WIDTH-1):0] q_a
);

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge wrclock)
begin
        // Port A  is for writing only
        if (we_a)
        begin
        ram[wraddr] <= wrdata;
        end
end

always @ (posedge rdclock)
begin
// Port B is for reading only
begin
q_a <= ram[rdaddr];
end
end
endmodule
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Example 5. True Dual-Port RAM Behavior Emulation

module test (wrdata, wraddr, rdaddr_a, rdaddr_b, 
    clk_a, clk_b, we_a, q_a, q_b);
    
    input [7:0] wrdata;
    input clk_a, clk_b, we_a;
    input [5:0] wraddr, rdaddr_a, rdaddr_b;
    output [7:0] q_a, q_b;
    
    simple_dual_port_ram_with_SDPs myRam1 (
        .wrdata(wrdata),
        .wraddr(wraddr),
        .rdaddr(rdaddr_a),
        .we_a(we_a),
        .wrclock(clk_a), .rdclock(clk_b),
        .q_a(q_a)
        );

    simple_dual_port_ram_with_SDPs myRam2 (
        .wrdata(wrdata),
        .wraddr(wraddr),
        .rdaddr(rdaddr_b),
        .we_a(we_a),
        .wrclock(clk_a), .rdclock(clk_a),
        .q_a(q_b)
        );
        
endmodule

Memory Mixed Port Width Ratio Limits
To enable clocks speeds of up to 1GHz, Stratix 10 devices block RAMs on silicon are
different from previous generation devices.

The new RAM block design is more restrictive with respect to use of mixed ports data
width. The redesigned Stratix 10 device block RAMs do not support 1/32, 1/16, or 1/8
mixed port ratios. The only valid ratios are 1, ½, and ¼ mixed port ratios. The
Quartus Prime Pro – Stratix 10 Edition Beta generates an error message for
implementation of invalid mixed port ratios.

If you are migrating a design that used invalid port width ratios for Stratix 10 devices,
modify the RTL to create the desired ratio. starting from components with valid ratios.

.

Figure 49. Dual-Port Memory with Invalid 1/8 Mixed Port Ratio
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To create a functionally equivalent design for Stratix 10 devices, create and combine
smaller memories with valid mixed port width ratios. For example, the following steps
implement a mixed port width ratio:

1. Create two memories with ¼ mixed port width ratio by instantiating the 2-Ports
memories from the IP Catalog.

2. Define some write enable logic to ping-pong writing between the two memories.

3. Interleave the output of the memories to rebuild a 1/8 ratio output.

Figure 50. 1/8 Width Ratio Example

This example shows the interleaving of two memories and the write logic. The chosen
write logic uses the least significant bit of the write address to decide which memory
to write. Even addresses write in memory mem_A, odd addresses write in memory
mem_B.

Because of the scheme that controls writing to the memories, you must take care in
reconstructing the full 64-bit output during a write. You must account for the
interleaving of the individual 8-bit words in the two memories.

Figure 51. Memory Output Descrambling Example

This example shows the descrambled output when attempting to read at address 0h0.

The following RTL examples implement the extra stage to descramble the data from
memory on the read side.
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Example 6. Top-Level Descramble RTL Code

module test 
#(    parameter WR_DATA_WIDTH = 8,
        parameter RD_DATA_WIDTH = 64,
        parameter WR_DEPTH = 64,
        parameter RD_DEPTH = 4,
        parameter WR_ADDR_WIDTH = 6,
        parameter RD_ADDR_WIDTH = 4
)(
    data, wraddress, rdaddress,    wren,
    wrclock, rdclock,    q
);

input    [WR_DATA_WIDTH-1:0]    data;
input    [WR_ADDR_WIDTH-1:0]    wraddress;
input    [RD_ADDR_WIDTH-1:0]    rdaddress;
input        wren;
input        wrclock;
input        rdclock;
output    [RD_DATA_WIDTH-1:0]    q;

wire wrena, wrenb;
wire [(RD_DATA_WIDTH/2)-1:0] q_A, q_B;

memorySelect memWriteSelect (
    .wraddress_lsb(wraddress[0]),
    .wren(wren),
    .wrena(wrena),
    .wrenb(wrenb)
);

myMemory mem_A (
    .data(data),
    .wraddress(wraddress),
    .rdaddress(rdaddress),
    .wren(wrena),
    .wrclock(wrclock),
    .rdclock(rdclock),
    .q(q_A)
);

myMemory mem_B (
    .data(data),
    .wraddress(wraddress),
    .rdaddress(rdaddress),
    .wren(wrenb),
    .wrclock(wrclock),
    .rdclock(rdclock),
    .q(q_B)
);

descrambler #(
    .WR_WIDTH(WR_DATA_WIDTH),
    .RD_WIDTH(RD_DATA_WIDTH)
) outputDescrambler (
    .qA(q_A),
    .qB(q_B),
    .qDescrambled(q)
);

endmodule 
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Example 7. Supporting RTL Code

module memorySelect (wraddress_lsb, wren, wrena, wrenb);
    input wraddress_lsb;
    input wren;
    output wrena, wrenb;

    assign wrena = !wraddress_lsb && wren;
    assign wrenb = wraddress_lsb && wren;
endmodule

module descrambler #(
    parameter WR_WIDTH = 8,
    parameter RD_WIDTH = 64
) (
    input [(RD_WIDTH/2)-1 : 0] qA,
    input [(RD_WIDTH/2)-1 : 0] qB,
    output [RD_WIDTH:0] qDescrambled
);

    genvar i;
    generate
      for (i=WR_WIDTH*2; i<=RD_WIDTH; i += WR_WIDTH*2) begin: descramble
         assign qDescrambled[i-WR_WIDTH-1:i-(WR_WIDTH*2)] = qA[(i/2)-1:(i/2)-
WR_WIDTH];
      assign qDescrambled[i-1:i-WR_WIDTH] = qB[(i/2)-1:(i/2)-WR_WIDTH];
    end
  endgenerate

endmodule 

2.4.3.7.3 Unregistered RAM Outputs

To achieve the highest performance, register the output of memory blocks before
using the data in any combinational logic. Driving combinational logic directly with
unregistered memory outputs can result in a critical chain characterized by insufficient
registers.

You can unknowingly use unregistered memory outputs followed by combinational
logic if you implement a RAM using the read-during-write new data mode. This mode
is implemented with soft logic outside the memory block that compares the read and
write addresses. This mode muxes the write data straight to the output. If you want to
achieve the highest performance, do not use the read-during-write new data mode.

2.4.3.8 DSP Blocks

DSP blocks support frequencies up to 1 GHz, but you must use all of the registers (two
input registers and the output register).

2.4.3.9 General Logic

Avoid using one-line logic functions that while structurally sound, generate multiple
levels of logic. The only exception to this is adding a couple of pipeline registers on
either side, so that the Hyper-Retimer can retime through the cloud of logic.
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2.4.3.10 Modulus and Division

The modulus and division operators are costly in terms of area and speed, unless they
use powers of two. Carefully consider whether there is an alternate implementation
that avoids a modulus or division operator. The Round Robin Scheduler topic shows
the replacement of a modulus operator with a simple shift, resulting in a dramatic
performance increase.

Related Links

Round Robin Scheduler on page 111

2.4.3.11 Resets

Use resets for circuits with loops in monitoring logic to detect erroneous conditions,
and pipeline the reset condition.

2.4.3.12 Hardware Re-use

One of the most effective ways to deal with loops due to hardware re-use is to unroll
the loops.

2.4.3.13 Algorithmic Requirements

These loops can be difficult to improve, but can sometimes benefit from a combination
of optimization techniques described in the General Optimization Techniques section.

Related Links

General Optimization Techniques on page 29

2.4.3.14 FIFOs

FIFOs always contain loops, but there are some efficient ways to implement the
internal FIFO logic to provide excellent performance.

One feature of some FIFOs is a bypass mode where data bypasses the internal
memory completely when the FIFO is empty. If you implement this mode in any of
your FIFOs, be aware of the possible performance limitations inherent in unregistered
memory outputs.

Related Links

Unregistered RAM Outputs on page 48
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2.5 Appendix: Parameterizable Pipeline Modules

The following examples show parameterizable pipeline modules in Verilog HDL,
SystemVerilog, and VHDL. Use these code blocks at top-level I/Os and clock domain
boundaries as part of a latency-insensitive design style. You can readily change the
latency of your circuit with these blocks.

Example 8. Parameterizable Hyper-Pipelining Verilog HDL Module

// Hyper-pipelining module HyperPipe Intel Version 2014/08/12
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *)
module hyperpipe # (
        parameter CYCLES
           parameter WIDTH,
    ) (
        input  clk,
        input  [WIDTH-1:0] din,
        output [WIDTH-1:0] dout
    );

    generate
        if (CYCLES==0) begin : GEN_COMB_INPUT
            assign dout = din;
        end
        else begin : GEN_REG_INPUT
            integer i;
            reg [WIDTH-1:0] R_data [CYCLES-1:0];

            always @(posedge clk) begin
                R_data[0] <= din;
                for(i=1;i<CYCLES;i=i+1) R_data[i] <= R_data[i-1];
            end
            assign dout = R_data[CYCLES-1];
        end
    endgenerate
endmodule

Example 9. Parameterizable Hyper-Pipelining Verilog HDL Instance

// Instantiation Template:
hyperpipe # (
        .CYCLES ( )
        .WIDTH  ( ),
    ) hp (
        .clk    ( ),
        .din    ( ),
        .dout   ( )
    );

Example 10. Parameterizable Hyper-Pipelining SystemVerilog Module

// Hyper-pipelining module HyperPipe Intel Version 2014/08/12
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *)
module hyperpipe_2d # (
        parameter CYCLES
        parameter PACKED_WIDTH,
        parameter UNPACKED_WIDTH,
    ) (
        input  clk,
        input  [PACKED_WIDTH-1:0] din  [UNPACKED_WIDTH-1:0],
        output [PACKED_WIDTH-1:0] dout [UNPACKED_WIDTH-1:0]
    );

    generate
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        if (CYCLES==0) begin : GEN_COMB_INPUT
            assign dout = din;
        end
        else begin : GEN_REG_INPUT
            integer i;
            reg [PACKED_WIDTH-1:0] R_data
                [CYCLES-1.0][UNPACKED_WIDTH-1:0];

            always @(posedge clk) begin
                R_data[0] <= din;
                for(i=1; i<CYCLES; i=i+1)
                     R_data[i] <= R_data[i-1];
                end
            assign dout = R_data[CYCLES-1];
        end
    endgenerate

Example 11. Parameterizable Hyper-Pipelining SystemVerilog Instance

// Instantiation Template:
hyperpipe # (
        .CYCLES         ( )
        .PACKED_WIDTH   ( ),
        .UNPACKED_WIDTH ( ),
    ) hp (
        .clk  ( ),
        .din  ( ),
        .dout ( )
    );

Example 12. Parameterizable Hyper-Pipelining VHDL Entity

-- HyperPipe Intel Version 2014/08/12
library IEEE;
use IEEE.std_logic_1164.all;
library altera;
use altera.altera_syn_attributes.all;

entity hyperpipe is
    generic (
       CYCLES  : integer
       WIDTH   : integer;
    );
    port (
       clk  : in  std_logic;
       din  : in  std_logic_vector (WIDTH - 1 downto 0);
       dout : out std_logic_vector (WIDTH - 1 downto 0)
    );
end hyperpipe;

architecture arch of hyperpipe is

    -- Prevent large hyperpipes from going into memory-based
altshift_taps,
    -- since that won't take advantage of Hyper-Registers
    attribute altera_attribute of hyperpipe :
        entity is "-name AUTO_SHIFT_REGISTER_RECOGNITION off";

    type hyperpipe_t is array(CYCLES-1 downto 0) of
        std_logic_vector(WIDTH-1 downto 0);
    signal HR : hyperpipe_t;

    begin
        wire : if CYCLES=0 GENERATE
            -- The 0 bit is just a pass-thru, when CYCLES is set to 0
            dout <= din;
        end generate wire;
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        hp : if CYCLES>0 GENERATE
            process (clk) begin
                if (clk'event and clk='1')then
                    HR <= HR(HR'high-1 downto 0) & din;
                end if;
            end process;
            dout <= HR(HR'high);
        end generate hp;

    end arch;
        

Example 13. Parameterizable Hyper-Pipelining VHDL Instance

-- Template Declaration
component hyperpipe
    generic (
        CYCLES : integer
        WIDTH  : integer;
    );
    port (
        clk  : in  std_logic;
        din  : in  std_logic_vector(WIDTH - 1 downto 0);
        dout : out std_logic_vector(WIDTH - 1 downto 0)
    );
end component;

-- Instantiation Template:
    hp : hyperpipe
        generic map (
            CYCLES =>
            WIDTH  => ,
        )
        port map (
            clk  => ,
            din  => ,
            dout =>
        );
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3 Running the Quartus Prime Pro – Stratix 10 Edition Beta
Software

This document describes use of the Hyper-Retimer and Fast Forward Compile features
for architecture evaluation, performance exploration, and timing closure in the
Quartus Prime Pro – Stratix 10 Edition Beta software. These features include the new
Hyper-Retimer and Fast Forward Compile optimization steps that enable the highest
performance of the Stratix 10 HyperFlex architecture.

Figure 52. Quartus Prime Pro – Stratix 10 Edition Beta GUI

• Hyper-Retimer—retimes registers during fitting to optimize fMAX performance
and balance the delay between register stages. The Hyper-Retimer can retime at
each routing element in the HyperFlex fabric, while maintaining the functionality of
your design.

• Fast Forward Compile— identifies bottlenecks in the design structure that limit
performance, recommends RTL changes to break bottlenecks, and predicts the
design performance after recommended RTL changes.

3.1 System Requirements

To experience the fastest compilation time, install the Quartus Prime Pro – Stratix 10
Edition Beta on a system that meets or exceeds the following specifications:
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• Intel Core i7 Dual or Quad core 64-bit processor

• 36 GB to 96 GB RAM

• SSD – Solid State Drive

For node-locked licenses, compile times vary by PC configuration.

3.1.1 Licensing

The Quartus Prime Pro – Stratix 10 Edition Beta is a special version of the Quartus
Prime Pro Edition software that provides advance support for only Stratix 10 devices.
Please contact your Intel® sales representative to obtain a license to enable the
Quartus Prime Pro – Stratix 10 Edition Beta software.

Note: This document assumes basic familiarity with the Quartus Prime Pro Edition software
and the basic Intel FPGA design flow.

Related Links

• www.altera.com/support

• www.altera.com/training

• www.altera.com/literature

3.2 Recommended Design Flow

The Quartus Prime Pro – Stratix 10 Edition Beta design flow introduces the Hyper-
Retimer and Fast Forward Compilation stages to maximize performance for Stratix 10
designs.
The Hyper-Retimer runs during the Fitter, after place and route, to retime registers
into Hyper-Registers for fine-grained performance improvements. Use Fast Forward
Compile to identify and break through performance bottlenecks that limit retiming
ability.

Figure 53. Hyper-Aware Design Flow Including Hyper-Retiming and Fast Forward
Compile

Hyper Aware Fitter
(including Hyper-Retimer)

Synthesis Timing
Analysis

Fitting
(plan>place>route>retime)

Fitting
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(Finalize)

Device
Programming

After the Hyper-Retimer or Fast Forward Compile steps, view the results in the
Compilation Report to evaluate performance and determine where to implement key
RTL performance improvements. After implementing any RTL changes, recompile the
design and rerun Fast Forward Compile until performance and timing analysis results
are satisfactory.
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Figure 54. Fast-Forward Compilation Flow
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Depending on your work flow, you can run Fast Forward Compile automatically during
every compilation, or you can run Fast Forward Compile as a separate process. For
example, automating Fast Forward Compilation helps when iterating through various
RTL changes. Conversely, when not focusing on design performance, such as when
performing board layout or pin and interface planning, save time by disabling Fast
Forward Compile.

Fast Forward Compilation results only predict performance after RTL changes. The
Compiler cannot use the Fast Forward results to generate programming files for
TimeQuest timing analysis, or for EDA netlist generation. To achieve results similar to
the Fast Forward Compile results, you must modify your RTL accordingly and
recompile the design.
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Related Links

• Step 1: Enable and Run Fast Forward Compile on page 56

• Step 2: Review Critical Chain Reports on page 57

• Step 3: Implement Performance Recommendations on page 58

3.2.1 Step 1: Enable and Run Fast Forward Compile

You can enable Fast-Forward Compile and the Hyper-Retimer for architecture
evaluation, performance exploration, and timing closure. To setup your project for
Hyper-Retiming and run Fast Forward Compile:

1. Create or open a project in the Quartus Prime Pro – Stratix 10 Edition Beta.

2. Click Assign ➤ Device, and then select Stratix 10 for the Device family.

3. The Hyper-Retimer is enabled by default for Stratix 10 designs. To manually
enable or disable the Hyper-Retimer, use the following setting in the Quartus
Settings File (.qsf):
set_global_assignment -name HYPER_RETIMER ON

4. To enable automatic Fast Forward analysis during every compilation, click
Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex ➤ Run Fast
Forward Analysis during compilation.

Figure 55. HyperFlex Settings

5. To run Fast Forward Compile, click Processing ➤ Start Compilation.

Note: Alternatively, you can run Fast Forward Compile as a separate process by
double-clicking Generate Fast Forward Timing Closure
Recommendations in the Tasks pane. You can run Fast Forward Compile
at the command line by typing quartus_fit --fastforward.

6. View the results in the Compilation Report to evaluate performance and implement
key RTL performance improvements.
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3.2.2 Step 2: Review Critical Chain Reports

Fast Forward Compile and the Hyper-Retimer report information about critical chains
in your design. The management of critical chains is vital to achieve the highest
performance for Stratix 10 designs. A critical chain is the element of your design that
prevents the Hyper-Retimer from further performance improvement. Often, the critical
chain includes more than two registers. You can then resolve these critical chains to
achieve the highest performance. The Hyper-Retimer also generates a text report with
the extension .retime.rpt

Hyper-Retimer Summary Report

The Hyper-Retimer generates detailed reports about each clock domain’s slack and
fMAX performance. The Hyper-Retimer Summary report includes recommendations
about RTL changes you can make to achieve higher fMAX performance. The report
includes details about the part of each clock domain that prevents the Hyper-Retimer
from achieving higher performance, and the number of registers that are not retimed.
The Hyper-Retimer report is under Retime Stage in the Fitter report. The report also
shows the total number of Hyper-Registers the Fitter uses. These values are for
information only, and does not affect changes you make to your RTL or design.

Figure 56. Hyper-Retimer Summary Report

Fast Forward Timing Closure Recommendations Report

Fast Forward Compile generates detailed reports about the fMAX performance gains
during each stage of Fast Forward Compile. The Fast Forward Compile Timing
Closure Recommendations reports include recommendations about RTL changes
you can make to achieve higher fMAX performance. Use the Fast Forward Timing
Closure Recommendations in the Compilation report to optimize your RTL.
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Figure 57. Fast Forward Timing Closure Recommendations

Related Links

• Retiming Restrictions and Workarounds on page 90
This section describes RTL design techniques you can use to avoid retiming
restrictions.

• Interpreting Critical Chain Reports on page 69
This section describes critical chain reports. Use the recommendations in the
report, and optimization techniques in this document, to improve the
performance of your design.

3.2.3 Step 3: Implement Performance Recommendations

Fast Forward Compile performs the Hyper-Retiming, Hyper-Pipelining, and Hyper-
Optimization in your design. Review and implement the suggested changes in your
design RTL to realize the predictive performance gains.

After implementing RTL changes, recompile the design and view the impact in the
Compilation report. The amount and type of changes that you implement depends on
your performance goals. For example, if you can achieve the target fMAX with simple
asynchronous clear removal or conversion, your optimization can end. However, if you
require additional performance, you must implement more significant Fast Forward
recommendations. Explore performance and implement the RTL changes to your code
until you reach the desired performance target.

3.3 Using the Hyper-Retimer

The Hyper-Retimer optimizes fMAX performance during fitting by retiming registers to
balance the delay between register stages. When you enable the Hyper-Retimer, the
Fitter prioritizes paths that cannot be retimed, such as loops. The Fitter then uses the
path delays predicted by the Hyper-Retimer to adjust placement. The Hyper-Aware
Fitter accounts for the Hyper-Retimer in prioritizing the critical paths. This process
exposes the true performance bottleneck that cannot be fixed by the retimer. Based
on the critical chains in the Hyper-Retimer report, you can make RTL or settings
changes to improve performance on subsequent compiles.
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To turn off the Hyper-Retimer, so it does not run during fitting, use the following line in
your .qsf file:

set_global_assignment -name HYPER_RETIMER OFF

In general, leave the setting at its default value, ON. You could turn off the Hyper-
Retimer if you easily meet your timing requirements without it, and want to save
compile time.

3.3.1 Interpreting Hyper-Retimer Reports

The Hyper-Retimer reports details of each clock domain’s slack and fMAX performance.
The report includes details about the part of each clock domain that prevented the
Hyper-Retimer from achieving higher performance. The Hyper-Retimer report is in
Retime Stage in the Fitter report. The Hyper-Retimer also generates a text format
report with the extension .retime.rpt.

Figure 58. Hyper-Retimer Summary Report (Retime Stage)

The Summary report includes a brief overview of the project information, including
two lines about register and Hyper-Register usage. Registers staying in ALMs gives
the number of registers that were not retimed out of ALMs by the Hyper-Retimer.
Hyper-Registers used gives the number of Hyper-Registers in the routing fabric that
were used by the Hyper-Retimer. Compare the Hyper-Retimer Summary report with
the Fitter Summary report that shows Total logic registers and Total Hyper-Registers
after fitting.

Total logic registers is the number of registers the Compiler uses after placement and
routing, but before the Hyper-Retimer runs. Total Hyper-Registers is the number of
Hyper-Registers the Compiler used after the Hyper-Retimer runs.
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Figure 59. Fitter Summary Report
 

 

Of the 10770 logic registers after the placement and routing completes, 9089 remain
in ALMs. This data means that 1681 (1077 - 9089) registers retime into Hyper-
Registers in the HyperFlex fabric. During retiming, a total of 5977 Hyper-Registers
implement the 1681 that retime out of ALMs. Again, these values are informational
only and does not affect changes you make to your RTL or settings.

Related Links

Using Fast Forward Compilation on page 65
This section describes using Fast Forward Compilation to guide you through the
performance optimization process.

3.3.1.1 Hyper-Retimer Clock Fmax Summary Report

The Clock Fmax Summary reports the actual fMAX after the Hyper-Retimer runs and
retimes registers to Hyper-Registers. The Clock Fmax Summary reports one row for
each clock domain.
This report indicates the fMAX performance you achieve if you program the device with
a programming file that generates from this compilation.

Figure 60. Hyper-Retimer - Clock Fmax Summary
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The Fmax column shows the fMAX the Hyper-Retimer achieves. The next three
columns (Achieved with Hyper-Retiming, Achieved with Hyper-Pipelining, and
Achieved with Hyper-Optimization) are blank because the Compiler performs
Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization only during Fast Forward
Compile. If the Restricted Fmax column shows a lower value than any of the other
columns, this typically occurs when some hard block in the clock domain (such as an
M20K block) has a lower maximum performance specification than the Hyper-Retimer
can achieve.

3.3.1.2 Retiming Limit Details Report

The Retiming Limit Summary lists the following data:

• Each clock domain in your design (in the Clock Transfer column)

• The reason the Hyper-Retimer could not make it run faster (in the Limiting Reason
column)

• The timing slack for the domain (in the Slack column)

• The clock period requirement (in the Relationship column)

Figure 61. Retiming Limit Details

When you click each clock domain line, a critical chain summary displays below. The
critical chain summary contains two tabs:
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• Critical Chain at Limit—displays the critical chain, which is the part of your
design that limited the Hyper-Retimer from achieving higher performance.

• Recommendations for Critical Chain—lists specific places in your design to
make changes that improve the performance of the critical chain.

The critical chain summaries contain the most important information about the
performance-limiting parts of your design, and recommendations to guide your
performance optimization.

Related Links

Interpreting Critical Chain Reports on page 69
This section describes critical chain reports. Use the recommendations in the
report, and optimization techniques in this document, to improve the performance
of your design.

3.3.2 Viewing the Hyper-Retimer Netlist

You can display and analyze the design netlist captured after the Hyper-Retimer stage
(post-fit). Click Tools ➤ Netlist Viewers ➤ Technology Map Viewers (post-
fitting) to display the netlist showing the Hyper-Registers and bypassed ALMs in the
design.

Figure 62. Accessing the Post-Hyper-Retimer Viewer

You can also right-click a critical chain in the Retiming Limit Details panel in the
Hyper-Retimer report, and choose Locate Critical Chain. The following images
compare the netlist views before synthesis (RTL Viewer), after the Fitter but before
the Hyper-Retimer (Technology Map (Post-Fit) Viewer), and after the Hyper-Retimer
(Post-Hyper-Retimer Viewer Showing Bypassed Flipflops).
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Figure 63. Locate Critical Chain

Figure 64. Technology Map Viewer

The example design has four banks of registers, a wide AND gate, and two output
register stages.
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Figure 65. RTL Viewer and Post-Fit Viewer Before Retiming

RTL Viewer Technology Map (Post-Fit) Viewer

Design:
 4 Register Banks
 Wide AND Gate
 Two Register Stages

After retiming, the second stage of the register banks is retimed forward into the first
bank of Hyper-Registers. The third and fourth stages are retimed forward across AND
gates (shown in purple) into Hyper-Registers. The first output stage is moved to a
Hyper-Register (the right-most register shown in pink).

Figure 66. Post-Fit Viewer After Retiming
Post-Hyper-Retimer Viewer Showing Bypassed Flipflops

Hyper-Register
Bypassed ALM Register

Legend
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3.4  Using Fast Forward Compilation

This section describes using Fast Forward Compilation to guide you through the
performance optimization process.

Fast Forward Compile provides the following feedback to help optimize design
performance:

• Reports the design's performance bottlenecks

• Recommends RTL changes to avoid the bottlenecks

• Predicts design performance after RTL changes

Use Fast Forward Compile iteratively to break through the following types of
performance bottlenecks with Hyper-Retiming, Hyper-Pipelining, and Hyper-
Optimization:

• Situations that prevent registers from being retimed are avoided with Hyper-
Retiming

• Clock domain boundaries without enough registers to maximize performance are
modified with Hyper-Pipelining

• Circuit structures that prevent further optimization are modified with Hyper-
Optimization

These changes are suggested in the retiming report. Based on the report, you can
decide how to implement these changes in a functionally valid way. With Fast Forward
Compile, you can see how specific design changes improve performance before any
actual modifications are made.

Use Hyper-Retiming

The Hyper-Retimer exposes true performance bottlenecks that you cannot correct
through conventional retiming. The first performance bottleneck is any condition that
prevents the retiming of registers. During Hyper-Retiming, the Fast Forward Compiler
ignores timing restrictions that typically prevent register retiming, such as registers
with asynchronous clears, or preserve synthesis attributes. Fast Forward Compile
reports each register that ignores retiming restrictions, so you can make the changes
to the corresponding RTL and remove the performance bottleneck.

Use Hyper-Pipelining

Another performance bottleneck occurs at clock domain boundaries without enough
registers to maximize performance. Clock domain boundaries include top-level I/Os
and asynchronous domain crossings. During Hyper-Pipelining, Fast Forward Compile
adds pipeline stages at clock domain boundaries, until adding them no longer
increases performance. Fast Forward Compile reports all registers at clock domain
boundaries where it adds pipeline stages during Hyper-Pipelining, so you can make
the changes to your RTL to remove the performance bottlenecks.

Use Hyper-Optimization

A third performance bottleneck can occur when circuit structures prevent further
optimization. During Hyper-Optimization, Fast Forward Compile assumes that all M20K
memory blocks and DSP blocks are fully registered. Fast Forward Compile reports all
structures it changes during Hyper-Optimization, so you can make the changes to
your RTL to remove the performance bottlenecks.

3 Running the Quartus Prime Pro – Stratix 10 Edition Beta Software

Stratix 10 High-Performance Design Handbook
65



3.4.1 Interpreting Fast Forward Compile Reports

Fast Forward Compile generates detailed reports about the current Fast Forward
Compile settings, and a summary of the fMAX performance gains during each stage of
Fast Forward Compile. Use the performance improvement recommendations to modify
your RTL to achieve higher fMAX performance. Review the Fast Forward Compile
information in Fast Forward Timing Closure Recommendations in the Compilation
report.

Figure 67. Fast Forward Timing Closure Recommendations - Hyper-Retimer Summary

Fast Forward Compile also generates report data in text format, with the
extension .fastforward.rpt. The Summary report includes a brief overview of the
project information, including two lines about register and Hyper-Register usage.
Registers staying in ALMs gives the number of registers that were not retimed out
of ALMs during Fast Forward Compile. Hyper-Registers used gives the number of
Hyper-Registers in the routing fabric that were used during Fast Forward Compile. The
values for Registers staying in ALMs, and Hyper-Registers used, may be different
than the values in the Retime stage of the Fitter report. The difference is because Fast
Forward Compile performs Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization
to allow more ALM registers to move into Hyper-Registers, to add more pipeline
registers, and to fully register RAM and DSP blocks. Therefore, the Fast Forward
Compile report typically shows fewer registers staying in ALMs, and more Hyper-
Registers used than the Retime stage.

3.4.1.1 Fast Forward Details Report

The Fast Forward Timing Closure Recommendations report includes separate
reports that summarize the Fast Forward Compile results for each clock domain in
your design. Each clock domain report includes a Fast Forward Summary that lists
the Fast Forward optimization step (Step column), a summary of the optimizations
applied (Fast Forward Optimizations Analyzed column), the potential fMAX with
those optimizations (To Achieve Fmax column), the timing slack for the domain
(Slack column), and the clock period requirement (Relationship column).
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Figure 68. Fast Forward Details for Clock Domain

Click on each step to display more details about the step, including some or all of the
following data:

Table 3. Fast Forward Details Report

Report Description

Optimizations Analyzed (cumulative) Lists all the optimizations analyzed in the Fast Forward Compile steps up to
and including the specific step.

Optimizations Analyzed (For Fast Forward
Step #<n>)

Lists only the optimizations analyzed in the specific Fast Forward Compile
step.

Critical Chain at Limit Displays the critical chain that limited the Hyper-Retimer from achieving
higher performance. Only the Fast Forward Limit step shows the critical chain
tab.

Recommendations for Critical Chain Lists specific places in your design to make changes that improve the
performance of the critical chain. Only the Fast Forward Limit step shows the
recommendations tab.

3.4.1.2 Fast Forward Optimizations Analyzed Report

The Optimizations Analyzed tab report lists the specific Hyper-Retiming, Hyper-
Pipelining, and Hyper-Optimizations performed during Fast Forward Compile. The
report organizes the Fast Forward optimizations hierarchically so that you can browse
from the high-level system overview to increasing amounts of detail.
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Figure 69. Fast Forward Step 5 Optimizations Analyzed (Cumulative)

The report organizes Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization step
data separately. The Hyper-Retiming analysis in Fast Forward Compile steps 1, 2, 3,
and 4 in the example removes asynchronous clears on a total of 9422 registers in one
clock domain. The Hyper-Pipelining analysis in Fast Forward Compile steps 3, 4, and 5
added up to 6 pipeline stages on 386 paths in one clock domain. The Hyper-
Optimization analysis in Fast Forward Compile step 2 fully registered 1600 RAM blocks.
You can expand each grouping of optimizations for more details.

Figure 70. Fast Forward Report Optimizations Summary

The report also groups optimizations by clock domain, entity, instance, and register
name.

Figure 71. Fast Forward Report Optimizations Register Details
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The Optimizations Analyzed report lists RTL changes you can make to reach a
particular performance level. If you make the same changes manually in your RTL and
recompile the design, you can expect to achieve the same performance.

For best performance, implement as many of the Fast Forward optimizations as you
can. The Hyper-Retimer executes the changes and predicts a certain level of
performance. The recommendations provided for improving the performance of critical
chains can have varying results. Optimizing one critical chain may uncover a second,
or multiple other critical chains, that have to be optimized to break through a
performance barrier.

3.4.2 Viewing the Fast Forward Compile Netlist

You can display and analyze the design netlist captured after the Fast Forward Compile
stage. This netlist reflects your design as if you implement all Fast Forward
recommendations. Use this netlist to visualize your optimized design implementation.

Figure 72. Accessing the Fast Forward Netlist Viewer

3.5 Interpreting Critical Chain Reports

This section describes critical chain reports. Use the recommendations in the report,
and optimization techniques in this document, to improve the performance of your
design.
Critical chains are an important new concept for designs in the Stratix 10 architecture.
A critical chain is the specific part of your design that prevents the Hyper-Retimer
from making it run any faster. Critical chain reports list the registers and
combinational nodes that comprise the critical chains in your design, and include
recommendations about steps you can take to improve performance.
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Figure 73. Sample Critical Chain

A B

In the above example, the thick red line from register A through combinational logic
and two registers to register B represents a sample critical chain. Register A cannot be
retimed forward, and register B cannot be retimed backward due to timing
restrictions. Sometimes register A and register B can be the same register, in which
case the critical chain is called a loop. The fMAX of the critical chain and its associated
clock domain is limited by the average delay of a register-to-register path, and
quantization delays of indivisible circuit elements like routing wires.

A critical path is the limiting factor that prevents a design from running faster with
conventional retiming techniques. A critical path is a register-to-register path, often
with combinational logic. With the Hyper-Retimer, the limiting factor is called a critical
chain because it often includes more than one register-to-register path. A critical chain
is a higher level abstraction of a critical path. You can analyze critical paths in
HyperFlex designs with the TimeQuest Timing Analyzer. However, the Hyper-Retimer
critical chain reports are the best place to see how to improve design performance.
With the Hyper-Retimer, you can focus on higher level optimization, because the
Hyper-Retimer uses Hyper-Registers to evenly balance slacks on all the registers in a
critical chain.

The performance recommendations for these chains can include one or more of the
following steps:

• Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay, but it might be more fruitful to look at other
recommendations too. Paths can have delay from too much combinational logic, or
from sub-optimal placement, or routing congestion, among other reasons.

• Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

• Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

Particular registers in critical chains can limit performance for many other reasons.

3.5.1 Types of Critical Chains

Depending on how they limit performance, critical chains are classified by the Hyper-
Retimer in one of the following ways:

• Insufficient Registers

• Loop

• Short path/long path

• Path limit

The following figure shows the location of the critical chain in the Hyper-Retimer
Report:
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Figure 74. Types of Critical Chains Listed as the Limiting Reason in the Hyper-Retimer

Report

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

Related Links

• Insufficient Registers on page 71

• Short Path/Long Path on page 75

• Path Limit on page 79

• Loops on page 81

3.5.1.1 Insufficient Registers

When registers at neither end of the chain can be retimed, and adding more registers
can improve performance, the limiting reason reported is Insufficient Registers.

3.5.1.1.1 Insufficient Registers Example

The following screenshots show the relevant parts of the Hyper-Retimer report and the
logic contained in the critical chain.

The Retiming Limit Details report indicates that the performance of the clock domain
named clk fails to meet its timing requirement of 1ns period (1GHz fMAX) with a slack
of -1.311ns, corresponding to a fMAX of 432.7 MHz.
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Figure 75. Retiming Limit Details

The circuit has an inefficient crossbar switch implemented with one stage of input
registers, one stage of output registers, and purely combinational logic to route the
signals. The input and output registers have asynchronous resets. Because the
multiplexer in the crossbar is not pipelined, the implementation is inefficient and the
performance is limited.

The Requirement column contains the period requirement of the clock domain,
including any setup and hold uncertainty.

Figure 76. Critical Chain in Technology Map Viewer
The critical chain goes from the input register, through a combinational logic cloud, to
the output register. The critical chain contains only one register-to-register path.
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Figure 77. Critical Chain with Insufficient Registers Reported by the Hyper-Retimer

Note that the beginning of the critical chain, on line 1, has Retiming Restriction listed
in the Path Info column. Also, the end of the critical chain, on line 37, has Retiming
Restriction listed also. The retiming restrictions are because of the asynchronous
resets on the two registers.

The following table shows the correlation between critical chain elements and the
Technology Map Viewer examples.

Table 4. Correlation Between Critical Chain Elements and Technology Map Viewer

Line Numbers in Critical
Chain Report

Circuit Element in the Technology Map Viewer

1-3 din_reg[33][0] source register and its output

4-14 FPGA routing fabric between din_reg[33][0] and Mux0~85, the first stage of mux in
the crossbar

15-17 Combinational logic implementing Mux0~85

18-20 Routing between Mux0~85 and Mux0~17, the second stage of mux in the crossbar

21-23 Combinational logic implementing Mux0~17

24-27 Routing between Mux0~17 and Mux0~33, the third stage of mux in the crossbar

28-29 Combinational logic implementing Mux0~17

30-33 Routing between Mux 0~33 and Mux0~68, the fourth stage of mux in the crossbar

34-35 Combinational logic implementing Mux0~68

36-37 dout_reg[76][0] destination register
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In the critical chain report in Figure 77 on page 73, there are 17 lines that list bypass
Hyper-Register in the Register column. Bypassed Hyper-Register indicates the
location of a Hyper-Register the Hyper-Retimer can use if there are more registers in
the chain, or if there are no restrictions on the endpoints. If there are no restrictions
on the endpoints, the Hyper-Retimer can retime the endpoint registers, or retime
other registers from outside the critical chain into the critical chain. If the RTL design
contains more registers through the crossbar switch, there are more registers that can
be retimed. The Fast Forward Compile process could also insert more registers to
increase the performance.

In the critical chain report, lines 2 to 36 list "Long Path (Critical)" in the Path Info
column. This indicates that the path is too long to run above the listed frequency. The
"Long Path" designation is also related to the Short Path/Long Path type of critical
chain. Refer to Short Path/Long Path section for more details. The (Critical)
designation exists on one register-to-register segment of a critical chain. The (Critical)
designation indicates that the register-to-register path is the most critical timing path
in the clock domain.

The Join column contains a "#1" on line 1, and a "#2" on line 29. The information in
the Join column helps interpret more complex critical chains. For more details, refer
to Complex Critical Chains section.

The Element column shows the name of the circuit element or routing resource at
each step in the critical chain. You can right-click the names to copy them, or cross
probe to other parts of the Quartus Prime Pro – Stratix 10 Edition Beta with the
Locate option, as shown in the following figure.

Figure 78. Cross Probe from the Critical Chain Report

Related Links

• Short Path/Long Path on page 75

• Complex Critical Chains on page 84

• Facilitate Register Movement (Hyper-Retiming) on page 14
This section discusses facilitating register movement in your design (Hyper-
Retiming).
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3.5.1.1.2 Optimizing Insufficient Registers

Evaluate the recommendations from the Hyper-Retimer to improve performance. To fix
critical chains with the limiting reason of insufficient registers, use Hyper-Retiming and
Hyper-Pipelining techniques that this documents describes.

Related Links

• Facilitate Register Movement (Hyper-Retiming) on page 14
This section discusses facilitating register movement in your design (Hyper-
Retiming).

• Add Pipeline Registers (Hyper-Pipelining) on page 26
This section discusses adding pipeline registers to increase performance.

Critical Chains with Dual Clock Memories

The Hyper-Retimer does not retime registers through dual clock memories. Therefore,
it is possible that a functional block in your design that is between two dual clock
FIFOs or memories could be reported as the critical chain, with a limiting reason of
Insufficient Registers, even when you perform a Fast Forward Compile. If you have a
critical chain with a limiting reason of Insufficient Registers, and the chain is between
dual clock memories, you can add pipeline stages to the functional block. You can also
add a bank of registers in the RTL design and allow the Hyper-Retimer to balance the
registers. Refer to Pipeline Stages section for a technique to introduce registers in that
critical chain with a software setting.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Hyper-Retimer can retime registers
across a single-clock memory. Additionally, a functional block between a dual-clock
FIFO and registered device I/Os is not affected by this behavior, because the Fast
Forward Compile can pull registers into the functional block through the registers at
the device I/Os.

Related Links

Appendix: Parameterizable Pipeline Modules on page 50

3.5.1.2  Short Path/Long Path

When the critical chain has related paths with conflicting characteristics where one
path could improve performance with more registers, and another path has no place
for additional registers, the limiting reason reported is Short Path/Long Path.

A critical chain is categorized as short path/long path when there are conflicting
optimization goals for the Hyper-Retimer to satisfy. Short paths and long paths are
always connected in some way, with at least one common node. The Hyper-Retimer
needs to maintain functional correctness by ensuring identical relative latency through
both critical chains, which results in conflicting optimization goals. Therefore, one
segment (the long path) can accept the retiming move, but the other segment (the
short path) cannot accept the retiming move. The retiming move is typically retiming
an additional register into the short and long paths.

Critical chains are categorized as short path/long path for the following reasons:

3 Running the Quartus Prime Pro – Stratix 10 Edition Beta Software

Stratix 10 High-Performance Design Handbook
75



• When Hyper-Register locations are not available on the short path to retime into.

• When retiming a register into both paths to improve the performance of the long
path does not meet hold time requirement on the short path. Sometimes, short
path/long path critical chains exist as a result of the circuit structures used in a
design, such as broadcast control signals, synchronous clears, and clock enables.

Short path/long path critical chains are a new optimization focus associated with post-
fit retiming. In conventional retiming, the structure of the netlist can be changed
during synthesis or placement and routing. However, during Hyper-Retiming, short
path/long path can occur because the netlist structure, and the placement and routing
cannot be changed.

3.5.1.2.1  Hyper-Register Locations Not Available

The Fitter may place the elements in a critical chain segment very close together, or
route them in such a way that there are no Hyper-Register locations available.
Sometimes all Hyper-Register locations in a critical chain segment are in use by the
Hyper-Retimer, so there are no more locations available for further optimization.

In the following example, the short path includes two Hyper-Register locations, both of
which have been used by the Hyper-Retimer. One is indicated on line 38, and the
other on line 41. Lines 38 and 41 indicate REG in the Register column. The names in
the Element column end in _dff, indicating that the Hyper-Registers in those
locations have been used. The _dff represents the D flop-flop. No other Hyper-
Register locations are available for the Hyper-Retimer to use in that chain segment. If
there were Hyper-Register locations available, particular lines would indicate that with
a bypassed Hyper-Register entry in the Register column. Line 45 is not a Hyper-
Register; it is an ALM register.

Figure 79. Critical Chain Short Path Segment with no Available Hyper-Register Locations

3.5.1.2.2 Example for Hold Optimization

On line 3 in the following example, the Register column indicates unusable (hold).
There is a Hyper-Register location available at the datae LUT input for the rmm|
Mux4~0 combinational node as indicated on line 3. However, it cannot be used
because using it does not meet hold time requirements as indicated on line 3. The
register on line 1 cannot be retimed forward, and the register on line 7 cannot be
retimed backward.
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Figure 80. Critical Chain with Short Path/Long Path

3.5.1.2.3 Optimizing Short Path/Long Path

Evaluate the recommendations from the Hyper-Retimer to optimize performance
limitations due to short path/long path.

Add Registers

Manually adding registers on both the short and long paths can be helpful if you can
accommodate the extra latency in the critical chain.

Figure 81. Critical Chain with Alternating Short Path/Long Path

Cannot Retime
Forwards Due
to Short Path

Long Path (LP)

Short Path (SP)

Legend

Cannot Retime
Backwards Due
to Short Path

If you add registers to the four chain segments, the Hyper-Retimer can optimize the
critical chain. When additional registers are available in the RTL, the Hyper-Retimer
can optimize their positions.
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Figure 82. Sample Short Path/Long Path with Additional Latency

Long Path (LP)

Short Path (SP)

Legend

Manually Added

Duplicate Common Nodes

When the short path/long path critical chain contains common segments originating
from same register, you can duplicate the register so one duplicate feeds the short
path and one duplicate feeds the long path.

Figure 83. Critical Chain with Alternating Short Path/Long Path
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to Short Path

Long Path (LP)

Short Path (SP)

Legend

Cannot Retime
Backwards Due
to Short Path
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Figure 84. Short Path/Long Path with Two Duplicate Nodes

Long Path (LP)

Short Path (SP)

Legend

Duplicated Nodes

The fitter and Hyper-Retimer can optimize the newly-independent segments
separately. The duplicated registers have common sources themselves, so they are
not completely independent, but the optimization is easier with an extra, independent
register in each part of the critical chain.

You can apply a maximum fan-out synthesis directive to the common source registers.
Use a value of one, because a value greater than one could result in the short and
long path segments having the same source node, which you tried to avoid.

Alternately, use a synthesis directive to preserve the duplicate registers if you
manually duplicate the common source register in a short path/long path critical
chain. Otherwise, the duplicates may get merged during synthesis. Using a synthesis
directive to preserve the duplicate registers can cause an unintended retiming
restriction, so it might be better to use a maximum fan-out directive.

Data and Control Plane

Sometimes, the long path can be in the data plane, and the short path can be in the
control plane. If you add registers to the data path, change the control logic. This can
be a time-consuming process. In cases where the control logic is based on the number
of clock cycles in the data path, you can add registers in the data path (the long path)
and modify a counter value in the control logic (the short path) to accommodate the
increased number of cycles used to process the data.

3.5.1.3 Path Limit

The critical chain has the limiting reason of Path Limit, when there are no more Hyper-
Register locations available on the critical path, and the design cannot run any faster
or be retimed into. Path Limit also indicates that you have reached a performance limit
of the current place and route result.

As shown in the following figure, the critical chain goes from a hard memory block to
the first Hyper-Register available outside the hard memory block. The fact that the
source is a hard memory block can be inferred from parts of the names on lines 1, 2,
and 3. Lines 1 and 2 refer to ram_block1a0, and line 3 contains a reference to
MEDIUM_EAB_RE, which refers to a medium embedded array block routing element.
The medium embedded array block is one of the hard memory blocks in Stratix 10
devices.
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Figure 85. Critical Chain with Path Limit

When the critical chain is a Path Limit, it shows Long Path in the Path Info column.
This indicates that the chain is too long, and it could go faster if the Hyper-Retimer
could retime a register into the chain. No entries marked as bypassed Hyper-Register
in the Register column indicate that there are no Hyper-Register locations available
for the Hyper-Retimer to use.

The limiting reason of Path Limit does not imply that the critical chain has reached the
inherent silicon performance limit. It simply means that the current place and route
result has the reported performance limit. Another compilation could result in a
different placement that allows the Hyper-Retimer to achieve better performance on
the particular critical chain. One common reason for a path limit is when registers
have not been packed into dedicated input or output registers in a hard DSP or RAM
block.

3.5.1.3.1 Optimizing Path Limit

Evaluate the recommendations from the Hyper-Retimer to see what optimizations are
recommended by the Quartus Prime Pro – Stratix 10 Edition Beta.

If your critical chain has a limiting reason of Path Limit and it is entirely in the core
logic and in the routing elements of the Intel FPGA fabric, the design can run at the
maximum performance of the core fabric. When the critical chain has a limiting reason
of Path limit, and it is through a DSP block or hard memory block, you can improve
performance by optimizing the path limit.

To optimize path limit, enable the optional input and output registers for DSP blocks
and hard memory blocks. When you do not use the optional input and output registers
for DSP blocks and memory blocks, the locations for the optional registers are not
available to the Hyper-Retimer for optimization, and are not shown as bypassed
Hyper-Registers in the critical chain. The path limit is the silicon limit of the path
without the optional input or output registers. The performance can be improved by
enabling optional input and output registers.

Turn on optional registers using the IP parameter editor to parameterize hard DSP or
memory blocks. If DSP or memory functions are inferred from your RTL, ensure you
follow the recommended coding styles described in Recommended HDL Coding Styles
so that the optional input and output registers of the hard blocks are used. The Hyper-
Retimer does not retime into or out of DSP and hard memory block registers. Hence, it
is important to instantiate the optional registers in order to achieve maximum
performance.

If your critical chain includes true dual port memory, refer to True Dual-Port Memory
for optimizing techniques.

Related Links

• Recommended HDL Coding Styles

• True Dual-Port Memory on page 42
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3.5.1.4 Loops

A loop is a feedback path in a circuit. When a circuit is heavily pipelined, loops are
often a limiting reason to increasing design fMAX through register retiming. A loop may
be very short, containing only a single register or much longer, containing dozens of
registers and combinational logic clouds. A register in a divide-by-two configuration is
a short loop.

Figure 86. Simple Loop

Toggle
FlipFlop

When the critical chain is a feedback loop, the number of registers in a loop cannot be
changed by the Hyper-Retimer without changing functionality. Retiming can be
performed around a loop without changing functionality, but additional registers
cannot be put in the loop. To explore performance gains, the Fast Forward Compile
process adds registers at particular boundaries of the circuit, such as clock domain
boundaries.

Figure 87. FIFO Flow Control Loop
In a FIFO flow control loop, upstream processing stops when the FIFO is full and
downstream process stops when the FIFO is empty.

Data
Producer

FIFO

FIFO Full

Figure 88. Counter and Accumulator Loop
In a counter and accumulator loop, a register's new value depends on its old value.
This includes variants like LFSRs (linear feedback shift register) and gray code
counters.

Counter

+1

Accumulator
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Figure 89. State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.

S0

S1

S2S3

S4

Figure 90. Reset Circuit Loop
Reset circuit loops include monitoring logic to reset if they get into an error condition.

Combinational
Logic

Use loops to save area through hardware re-use. Components that are re-used over
several cycles typically involve loops. For example reused components include CRC
calculations, filters, floating point dividers, and word aligners. Loops are also used in
closed loop feedback designs such as IIR filters and automatic gain control for
transmitter power in remote radiohead designs.

3.5.1.4.1  Example of Critical Chain with Loops as the Limiting Reason

The following screenshots show the relevant panels from the Hyper-Retimer report
and the logic contained in the critical chain.
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Figure 91. Fast Forward Compile Report showing Limiting Reason for Hyper-
Optimization is a Loop

In the following figure, the Join ID for the start and end points is the same, which is
#1. This case indicates that the start and end points of the chain are the same, thus
making it a loop.

Figure 92. Critical Chain with Loop as Reported by the Hyper-Retimer

Figure 93. Critical Chain in Technology Map Viewer

The output of the RetryCnt[0] register feeds back to its enable input through two
levels of combinational logic. The other inputs to the logic cone for the RetryCnt[0]
register are not shown for clarity, but the following source code shows parts of the
MAC_tx_ctrl source and some of the inputs to the RetryCnt registers.

Example 14. Source Code for Critical Chain

StateJam:
if (RetryCnt<=MaxRetry&&JamCounter==16)
                Next_state=StateBackOff;
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else if (RetryCnt>MaxRetry)
                Next_state=StateJamDrop;
else
                Next_state=Current_state;

always @ (posedge Clk or posedge Reset)
            if (Reset)
                        JamCounter    <=0;
            else if (Current_state!=StateJam)
                        JamCounter  <=0;
            else if (Current_state==StateJam)
                        JamCounter  <=JamCounter +1;

always @ (posedge Clk or posedge Reset)
            if (Reset)
                        RetryCnt   <=0;
            else if (Current_state==StateSwitchNext)
                        RetryCnt   <=0;
            else if (Current_state==StateJam&&Next_state==StateBackOff)
                        RetryCnt  <=RetryCnt +1;

3.5.2 Details about Critical Chain Reports

The topics below apply to any type of critical chain.

3.5.2.1 One Critical Chain per Clock Domain

The Hyper-Retimer reports one critical chain per clock domain, except in a special case
covered in Critical Chains in Related Clock Groups. If you perform a Fast Forward
Compile, the Hyper-Retimer reports one critical chain per clock domain per Fast
Forward optimization step. The Hyper-Retimer does not report multiple critical chains
per clock domain because only one chain is the critical chain.

Look at other chains in your design to check if there are other areas of the design that
you could optimize. You can see other chains by looking through the critical chains in
each step of the Fast Forward Compile report. Each step of the Fast Forward Compile
tests a set of changes such as removing or converting asynchronous clears and adding
pipeline stages and reports the performance based on those changes.

Related Links

Critical Chains in Related Clock Groups on page 84

3.5.2.2 Critical Chains in Related Clock Groups

When two or more clock domains have the exact same timing requirement, and there
are paths between the domains, and the registers on the clock domain boundaries do
not have a Don’t Touch attribute, the Hyper-Retimer reports a critical chain for a
Related Clock Group. The optimization techniques critical chain types also apply to
critical chains in related clock groups.

3.5.2.3 Complex Critical Chains

Complex critical chains consist of several segments connected with multiple join
points. A join point is indicated with a positive integer in the Join column in the Hyper-
Retimer report panels. Join points are listed at the ends of segments in a critical chain,
and they indicate where segments diverge or converge. Join points indicate
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connectivity between chain segments when the chain is listed in a line-oriented text-
based report. Join points correspond to elements in your circuit, and show how they
are connected to other elements to form a critical chain.

The following example shows how join points correspond to circuit connectivity, using
the sample critical chain in the following table.

Table 5. Sample Critical Chain

Path Info Register Join Element

REG #1 a

b

REG #2 c

------------ ------------ ------------ ------------

REG #3 d

e

REG #2 c

------------ ------------ ------------ ------------

REG #3 d

f

REG #4 g

------------ ------------ ------------ ------------

g

h

a

Figure 94. Visual Representation of Sample Critical Chain
Each circle in the diagram contains the element name and the join point number from
the critical chain table.

d
#3

g
#4

a
#1

c
#2
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Figure 95. Complex Critical Chain
A critical chain can include dozens of join points. The complex critical chain shown
below has 35 join points.

For long critical chains, identify smaller parts of the critical chain for optimization.
Recompile the design and analyze the changes in the critical chain. Refer to Optimizing
Loops for other approaches to focus your optimization effort on part of a critical chain.

3.5.2.4 Extend to locatable node

You may see a path info entry of “Extend to locatable node” in a critical chain. This is
a convenience feature to allow you to correlate nodes in the critical chain to design
names in your RTL.

Not every line in a critical chain report corresponds to a design entry name in an RTL
file. For example, individual routing wires have no correlation with names in your RTL.
Typically that is not a problem, because another name on a nearby or adjacent line
corresponds with, and is locatable to, a name in an RTL file. Sometimes a line in a
critical chain report may not have an adjacent or nearby line that you can locate in an
RTL file; this occurs most frequently with join points. When that happens, the critical
chain segment is extends if necessary until it reaches a line that can be located to an
RTL file.
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3.5.2.5 Domain Boundary Entry and Domain Boundary Exit

You can see Domain Boundary Entry or Domain Boundary Exit indicated in the Path
Info column for a critical chain. The terms domain boundary entry and domain
boundary exit refer to paths that are unconstrained, paths between asynchronous
clock domains, or between a clock domain and top-level device input-outputs. Domain
boundary entry and exit can also be indicated for some false paths as well.

A domain boundary entry refers to a point in the design topology, at a clock domain
boundary, where the Hyper-Retimer can insert register stages (where latency can
enter the clock domain) if Hyper-Pipelining is enabled. The concept of a domain
boundary entry is independent of the dataflow direction. The Hyper-Retimer can insert
register stages at the input of a module, and perform forward retiming pushes, and it
can insert register stages at the output of a module, and perform backward retiming
pushes. These insertions occur at domain boundary entry points.

A domain boundary exit refers to a point in the design topology, at a clock domain
boundary, where the Hyper-Retimer can remove register stages and the latency can
exit the clock domain, if Hyper-Pipelining is enabled. The Hyper-Retimer removing a
register may be counter intuitive. However, it may be necessary to retain functional
correctness, depending on other optimizations performed by the Hyper-Retimer.

Sometimes a critical chain indicates a domain boundary entry or exit when there is an
unregistered I/O feeding combinational logic on a register-to-register path as shown in
the following figure.

Figure 96. Domain Boundary with Unregistered Input/Output

Combinational
Logic

The register-to-register path might be shown as a critical chain segment with a
domain boundary entry or a domain boundary exit, depending on how it restricted the
Hyper-Retimer. The unregistered input prevents the Hyper-Retimer from inserting
register stages at the domain boundary, because the input is unregistered. Likewise,
the unregistered input can also prevent the Hyper-Retimer from removing register
stages at the domain boundary.

Critical chains with a domain boundary exit do not provide complete information for
you to determine what prevented the Hyper-Retimer from retiming a register out of
the clock domain. To determine why a register could not be retimed, you must look in
your design to identify the signals that connect to the other side of a register
associated with a domain boundary exit.

Domain boundary entry and domain boundary exit can appear independently in critical
chains. They can also appear in combination such as, a domain boundary exit without
a domain boundary entry, or a domain boundary entry at the beginning and end of a
critical chain.

The following critical chain begins and ends with domain boundary entry. The domain
boundary entries are the input and output registers connecting to top-level device
I/Os. The input register is round_robin_mod_last_r and the output register is
round_robin_mod_next.
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Figure 97. Critical Chain Schematic with Domain Boundary

The limiting reason for the base compile is Insufficient Registers.

Figure 98. Fast Forward Compile Report with Insufficient Registers

The following parts of the critical chain report show that the endpoints are labeled with
Domain Boundary Entry.

Figure 99. Critical Chain with Domain Boundary Entry

Both the input and output registers are indicated as Domain Boundary Entry because
the Fast Forward Compile could insert register stages at these boundaries if Hyper-
Pipelining were enabled. Because the critical chain for the base compile does not
contain any Fast Forward optimizations, no additional register stages were inserted at
either the input to the chain, or the output of the chain.

A similar path in the same circuit has an endpoint indicated as Domain Boundary Exit
in a critical chain reported after two steps of Fast Forward optimization. The following
screenshot shows that the limiting reason for Fast Forward Step #2 is Short path/Long
path.

3 Running the Quartus Prime Pro – Stratix 10 Edition Beta Software

Stratix 10 High-Performance Design Handbook
88



Figure 100. Fast Forward Compile Report with Short Path/Long Path

3.5.2.6 Critical Chains with Dual Clock Memories

The Hyper-Retimer does not retime registers through dual clock memories. Therefore,
it is possible that a functional block in your design that is between two dual clock
FIFOs or memories could be reported as the critical chain, with a limiting reason of
Insufficient Registers, even when you perform a Fast Forward Compile. If you have a
critical chain with a limiting reason of Insufficient Registers, and the chain is between
dual clock memories, you can add pipeline stages to the functional block. You can also
add a bank of registers in the RTL design and allow the Hyper-Retimer to balance the
registers. Refer to Pipeline Stages section for a technique to introduce registers in that
critical chain with a software setting.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Hyper-Retimer can retime registers
across a single-clock memory. Additionally, a functional block between a dual-clock
FIFO and registered device I/Os is not affected by this behavior, because the Fast
Forward Compile can pull registers into the functional block through the registers at
the device I/Os.

Related Links

Appendix: Parameterizable Pipeline Modules on page 50

3.5.2.7 Critical Chain Bits and Buses

The critical chain of a design commonly includes registers that are single bits in a
wider bus or register bank. When you analyze such a critical chain, focus on the bus
as a whole, instead of analyzing the structure related to the single bit. For example, a
critical chain that refers to bit 10 in a 512 bit bus probably corresponds to similar
structures for all the bits in the bus. A technique that can help with this approach is to
mentally replace each bit index, such as [10], with [*].

If the critical chain includes a register in a bus where different slices go through
different logic, then focus your analysis on the appropriate slice based on which
register is reported in the critical chain.

3.5.2.7.1 Delay Lines

You may have a parameterized module that delays a bus by some number of clock
cycles. Sometimes that kind of structure is converted during synthesis to an
ALTSHIFT_TAPS Megafunction. The following screenshot shows part of a critical chain
with a delay module that has been converted to an ALTSHIFT_TAPS Megafunction.
The highlighted section at the right-hand end shows a design hierarchy of
altshift_taps:r_rtl_0, indicating that synthesis replaces the bank of registers
with the ALTSHIFT_TAPS IP core. Parts of the ALTSHIFT_TAPS IP core cause the
critical chain segment categorization as a short path.
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Figure 102. Critical Chain Report with Delay Line

The Fitters places the chain of registers so close together that the hold time cannot be
met if the Hyper-Retimer uses any of the intermediate Hyper-Register locations.
Turning off Auto Shift Register Replacement for the bank of registers would
prevent synthesis from using the ALTSHIFT_TAPS Megafunction and probably resolve
the short path part of that critical chain.

Consider whether a RAM-based FIFO implementation is an acceptable substitute for a
register delay line. If one function of the delay line is pipelining routing to move
signals a long distance across the chip, then a RAM-based implementation is typically
not an acceptable substitute. A RAM-based implementation can be a compact way to
delay a bus of data if you do not need to move it a long distance across the chip.

3.6 Retiming Restrictions and Workarounds

This section describes RTL design techniques you can use to avoid retiming
restrictions. There are a variety of situations that cause retiming restrictions. Some
exist because of hardware characteristics, some exist because of software behavior,
and some are inherent in a design. You can avoid many of the following retiming
restrictions with RTL design techniques, although some restrictions are inherent in a
design.

Table 6. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this situation occurs in the design, the registers involved are not retimed.
This ensures that the Hyper-Retimer does not affect design functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. Any
register that has an asynchronous clear cannot be retimed into a Hyper-
Register. Use asynchronous clears only when necessary, such as state
machines or control logic. Often, you can avoid or remove asynchronous
clears from large parts of a datapath.

Register drives an asynchronous signal This design condition is inherent in any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve
attributes

The Hyper-Retimer does not retime registers with these attributes. If you use
the preserve attribute to manage register duplication for high fan-out
signals, try removing the preserve attribute. The Hyper-Retimer may be able
to retime the high fan-out register along each of the routing paths to its
destinations. Alternatively, use the dont_merge attribute. The Hyper-
Retimer retimes registers in ALMs, DDIOs, single port RAMs, and DSP blocks.

continued...   
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Design Condition Hyper-Register Support

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

Register is a partition boundary for
incremental compilation

This condition is inherent in any design that uses incremental compilation. If
this retiming restriction prevents you from achieving the required
performance, add additional registers inside the partition boundary for the
Hyper-Retimer to optimize.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

Register location is an unknown block This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch Hyper-Registers cannot implement latches. Sometimes, latches are inferred
because of RTL coding issues, such as with incomplete assignments. If you
do not intend to implement a latch, change the RTL.

Register location is at an I/O boundary All designs contain I/O, but you can add additional pipeline stages next to
the I/O boundary for the Hyper-Retimer to optimize.

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock Hyper-Registers are clocked by only the dedicated clock network. Using the
routing fabric to distribute clock signals is uncommon, especially for
performance-critical parts of a design. Consider implementing a small clock
region instead.

Register is a timing exception end-point The Hyper-Retimer does not retime registers that are sources or destinations
of SDC constraints.

Register with inverted input or output This condition is uncommon.

Register is part of a synchronizer chain The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Hyper-Retimer does not retime registers that are
detected or marked as part of a synchronizer chain. Add more pipeline
stages at the clock domain boundary adjacent to the synchronizer chain to
provide flexibility for the Hyper Retimer.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at once frequency, and fans out to registers running at
another frequency. The Hyper-Retimer does not retime registers at cross-
clock boundaries. Consider adding additional pipeline stages at one side of
the clock domain boundary, or the other, to provide flexibility for the Hyper-
Retimer.

Related Links

• Timing Constraint Considerations on page 23
This section recommends specific timing constraint techniques to maximize
performance.

• Synchronizers on page 25
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4 HyperFlex Porting Guidelines
This document and the Quartus Prime Pro – Stratix 10 Edition Beta software provide
step-by-step recommendations to increase design performance using the following
code optimization techniques to leverage the Stratix 10 HyperFlex architecture:

• Hyper-Retiming

• Hyper-Pipelining

• Hyper-Optimization

The Quartus Prime Pro – Stratix 10 Edition Beta software focuses on core performance
exploration. To experiment with performance exploration, use a large, second level
module that does not contain periphery IP (transceiver, memory, etc.). For designs
that include specialized IP modules, this document provides Stratix 10 migration
guidelines for Stratix V or Arria 10 designs.

For the purposes of performance exploration, focus on the relative performance
improvements that can be made when you take advantage of the HyperFlex
architecture. Once you implement the design optimizations suggested by Fast Forward
Compile in your design, you can realize the performance gains and move toward
timing closure at the full chip level.

4.1 Suggested Scope for Performance Exploration and Design
Migration

You can make specific RTL changes to optimize performance for Stratix 10 designs.
This increased speed can help you close timing, or provide flexibility to add additional
functionality to your design.

When you convert a design for Stratix 10 FPGAs, the required RTL changes are minor
and similar to the changes required any time you switch to a new device family.
Required changes include device-specific changes, such as updating PLLs, high-speed
I/O pins, and other resources. These components have the same general functionality.
However, these components include features to enable higher operational speeds. For
example:

• DSP blocks have added pipeline registers and support a floating point mode.

• Memory blocks have additional logic for coherency and some restrictions related to
the width.

Some additional design modifications can enable retiming optimizations to take
advantage of the Stratix 10 architecture and achieve dramatic performance
improvements.
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Start the migration process by picking a lower level block in the design. This block
should not contain any specialized IPs, such as transceivers. Migrating all the
individual IPs could be quite time consuming. This migration is not the most effective
use of the performance exploration at this stage.

Black-box any special IP component and only keep components which are required for
the current level you have selected. Only keep the following key blocks for core
performance exploration:

• PLLs for generating clocks

• Core Blocks (Logic, Registers, Memories, DSPs)

Note: If you are migrating the design from a previous version of the Quartus software, you
might have to replace some components if they are incompatible with or unavailable
in the current software version.

When black-boxing components, maintain the module port definition. You cannot
simply remove the source file from the project. You must specify the port definition
and direction of every component used in the design to the synthesis software. Failure
define the ports results in compilation errors. Check the error messages and fix any
missing port/module definitions.

Figure 103. Compilation Error Messages

The easiest way to black-box a module is to empty its functional content. Below are
examples for black-boxing content depending on whether you are using Verilog HDL or
VHDL:

4.1.1 Black-boxing Verilog HDL Modules

In black-boxing Verilog HDL, keep the module definition but delete the functional
description.

Before:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
    parameter k = 8;
    input [k-1:0] V, W;
    input Sel;
    output [k-1:0] F;
    reg [k-1:0] F;

    always @(V or W or Sel)
        if (Sel == 0)
              F = V;
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        else
              F = W;
endmodule

After:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
    parameter k = 8;
    input [k-1:0] V, W;
    input Sel;
    output [k-1:0] F;
endmodule

4.1.2 Black-boxing VHDL Modules

In black-boxing VHDL, keep the entity as-is, but delete the architecture. In the case
when you have multiple architectures, make sure you remove all of them.

Before:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC ( k : INTEGER := 8) ;
    PORT (    V, W : IN    STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
              Sel  : IN    STD_LOGIC ;
              F    : OUT   STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
    PROCESS ( V, W, Sel )
    BEGIN
        IF Sel = '0' THEN
            F <= V ;
        ELSE
            F <= W ;
        END IF ;
    END PROCESS ;
END Behavior ;

After:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC ( k : INTEGER := 8) ;
    PORT (    V, W : IN    STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
              Sel  : IN    STD_LOGIC ;
              F    : OUT   STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
END Behavior ;

4 HyperFlex Porting Guidelines

Stratix 10 High-Performance Design Handbook
94



In addition to black-boxing the modules you are not interested in, you must put them
into their own partition to separate them from the rest of the design. Putting black-
boxed modules into an empty partition prevents the logic connected to the black-
boxed modules from being optimized away during synthesis.

To create a new partition:

1. Create a new partition.

2. Set it to Empty.

3. Add all the black-box modules into this partition.

Figure 104. Create New Partition

Figure 105. Set Partition to Empty
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4.1.3 Clock Management

After black-boxing appropriate logic, ensure that all registers in the design are still
receiving a clock signal. All the PLLs must still be present. Pay close attention to any
clock which could be coming out of a black-boxed module. If this occurs in your
design, you have to recreate this clock. Failure to recreate the clock marks any
register downstream as unclocked. This changes the logic function of your design,
because registers that do not receive a clock could be removed by the synthesis
engine during optimization.

Examine the clock definitions in the SDC file to determine if a clock is created in one of
the black-boxed modules. Looking at a particular module, several cases can happen:

• There is a clock definition in that module

— Does the clock signal reach the primary output of the module and a clock pin
of a register downstream of the module?

• No: this clock is completely internal and you do not have to do anything.

• Yes: create a clock on the output pin of that module matching the
definition you found in the SDC.

• There is no clock definition in that module

— Is there a clock feedthrough path in that module?

• No: you do not have to do anything.

• Yes: create a new clock on the feedthrough output pin of the module.

4.1.4 Pin Assignments

Once you start black-boxing logic, you might encounter some pin assignment issues.
Below are common situations to look for:

• Input pins which have been configured for high speed communication

The Quartus Prime Pro – Stratix 10 Edition Beta checks for the status of high-speed
pins and generates some errors if these pins are unconnected in the design. When you
black-box transceivers, you may encounter this situation. To address these errors, re-
assign the HSSI pins to a standard I/O pin. You might have to change the I/O bank as
well.

Figure 106. High-speed Pin Error Messages

In the .qsf file, it translates to the following:

set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in1
set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in2
set_instance_assignment –name IO_STANDARD “2.5 V” –to hip_serial_rx_in3
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set_location_assignment IOBANK_4A –to hip_serial_rx_in1
set_location_assignment IOBANK_4A –to hip_serial_rx_in2
set_location_assignment IOBANK_4A –to hip_serial_rx_in3

Figure 107. Pins Error Messages

Dangling pins

If you have high-speed I/O pins dangling because of black-boxing components, set
them to virtual pins. You can enter this assignment in the Assignment Editor, or in
the .qsf file directly, as shown below:

set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in1
set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in2
set_instance_assignment –name VIRTUAL_PIN ON –to hip_serial_tx_in3

GPIO pins

If you have GPIO pins, make them virtual pins using this qsf assignment:

set_instance_assignment VIRTUAL_PIN –to *

4.1.5 Transceiver Control Logic

Your design may have some components with added logic that controls them. For
example, you might have a small design which controls the reset function of a
transceiver. You can leave these blocks in the top-level design and their logic is
available for optimization.
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4.1.6 Upgrade Outdated IP Cores

If you have outdated IP components in your design, click Project ➤ Upgrade IP
Components to upgrade the components to the latest version. For example, EMIF
logic is a good candidate for this. You must upgrade every IP component that is not
black-boxed to the current version.

Note: Some IP components might not be supported in Stratix 10 designs. If those
components are critical (for example, PLL), you must modify your design and replace
them with Stratix 10-compatible IP components.

4.2 Top-Level Design Considerations

Consider the following top-level design issues:

• I/O constraints

• Reset logic

• DSP and M20K blocks

Wrap the top-level in a register ring.

I/O constraints

In order to get the maximum performance of the Hyper-Retimer engine, remove the
following constraints from your SDC file:

• set_input_delay

• set_output_delay

These constraints model how much time out of a given clock period is used outside of
the block itself. For the purposes of analyzing the effect of design optimizations, you
want to use all the available slack within the block itself. This helps maximize
performance at the module level. These constraints can be added back when moving
to full chip timing closure.

Resets

If you remove reset generation from the design, you have to provide a replacement
signal. The easiest way to do this is to connect it directly to an input pin of your
design.

Although this is technically correct, it might affect the retiming capabilities in Stratix
10 architectures. Add a couple of pipeline stages to your reset signal. This helps the
Hyper-Retimer to optimize between the reset input and the first level of registers.

Special Blocks

Retiming does not automatically change some components. Some examples are DSP
and M20K blocks. In order to achieve higher performance through retiming, you can
manually recompile these blocks. Look for the following conditions:
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• DSPs: Watch the pipelining depth. More pipeline stages results in a faster design.
If you see that retiming is limited by the logic levels in a DSP block, add more
pipeline stages.

• M20Ks: Retiming relies heavily on the presence of registers to move logic around.
With M20K blocks, you can help the Quartus Prime Pro – Stratix 10 Edition Beta by
registering the logic memory twice:

— Once inside the M20K block directly

— Once in the fabric, at the pins of the block

Register the Block

Register all inputs and all outputs of your block. This register ring mimics the way the
block is driven when embedded in the full design. The ring also avoids the retiming
restriction associated with registers connected to inputs/outputs. The first and last
level of registers should now be able to retime more realistically.

4.3 Summary

These guidelines allow you to quickly and easily evaluate the benefits of design
optimizations that leverage the Stratix 10 HyperFlex architecture, while still preserving
your design’s functional intent. Even though these suggestions require minor
modifications to the design, they are meant to get your design to a stage where you
can quickly apply the suggested design optimizations, and achieve major performance
gains in your design’s most critical modules before going to the full chip level for
timing closure.
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5 Design Example Walk-Through
This section illustrates use of Fast-Forward Compilation and register movement
(Hyper-Retiming) to improve performance in a real-world median filter design
example. This walk-through describes project setup, design compilation, interpreting
results, and optimizing RTL.

Figure 108. Median Filter Operational Diagram
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5.1 Median Filter Design Example

This walk-through provides a small image processing median filter design example to
illustrate use of Fast-Forward Compilation and Hyper-Retiming.

Note: Intel provides supporting design example project and design files for this walk-
through. Download the supporting median.zip file available with this document.
Unzip the file to use and refer to a complete, verified design example, including all
project files, constraint files, design files, and example RTL.

The median filter is a non-linear filter that removes impulsive noise from an image.
These filters require the highest performance. The design requirement is to perform
real time image processing on a factory floor.1
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Figure 109. Before and After Images Processed with Median Filtering

5.1.1 Step 1: Setup the Project

Follow these instructions to setup the Median Filter design example project. The
design example project includes the median.sdc file that defines the single clock
single that drives the design. The design example uses this clock definition throughout
the design flow.

1. Download and extract the Median Filter design example.

2. Open the median.qsf project in the Quartus Prime Pro – Stratix 10 Edition Beta
software.

3. Click Assign ➤ Device and confirm the following device assignment settings:

• Device family: Stratix 10 (GX/SX).

• Device: 1SG280LN3F43E1VG (Advanced)

4. All I/Os in the example design are set as "virtual" pins, meaning that the Fitter
does not actually connect them to real device pins. To view the state of these
virtual pins, click Assignments ➤ Assignment Editor.

5. To enable the Hyper-Retimer and perform Hyper-Optimizations, confirm the
following setting in the median.qsf settings file for the project:
set_global_assignment -name HYPER_RETIMER ON

6. Click Assignments ➤ Settings ➤ Compiler Settings ➤ HyperFlex and confirm
the following settings:

1 This median filter design was first presented in a paper titled “An FPGA-Based Implementation
for Median Filtering Meeting the Real-Time Requirements of Automated Visual Inspection
Systems” at 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal,
2002. The design is publicly available under GNU General Public License as published by the
Free Software Foundation.
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• Enable Hyper-Retimer

• Enable Run Fast Forward Timing Closure Recommendations

7. Click Tools ➤ TimeQuest Timing Analyzer and define all clocks and specify a 1
GHz clock frequency requirement. TimeQuest settings save to a Synopsys Design
Constraints (.sdc) file. Alternatively, you can create the .sdc file manually.

8. Click Assignments ➤ Assignment Editor and assign the Virtual Pin option to
all pins.

Figure 110. HyperFlex Settings

5.1.2 Step 2: Run Fast-Forward Compilation

To run Fast Forward Compile, click Processing ➤ Start Compilation. Alternatively,
you can run Fast Forward Compile as a separate process by double-clicking Generate
Fast Forward Timing Closure Recommendations in the Tasks pane. You can run
Fast Forward Compile at the command line by typing quartus_fit --
fastforward. Run Fast Forward Compile after running the Fitter. Your design must
successfully run through the previous compilation stages before Fast Forward Compile.

5.1.3 Step 3: View Fast-Forward Recommendations

The Compiler generates detailed reports following processing. View the results of
Hyper-Retiming in the Hyper-Retimer section of the Compilation Report.
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5.1.3.1 Hyper-Retimer Summary Report

The Hyper-Retimer Summary reports provides an overview of conditions during the
Hyper-Retimer stage.

Figure 111. Hyper-Retimer Summary Report

The report lists the number of registers remaining in adaptive logic modules (ALM),
compared with the number of registers moved to Hyper-Registers (located in the
routing network). In this example, 56 registers remain in traditional locations in the
ALM and 281 Hyper-Register locations are used.

5.1.3.2 Fast-Forward Details Report

The Fast-Forward Details reports the following information about each clock domain:

• Base Performance—the first line of the report lists the “Base Performance,
reflecting the current fMAX without any RTL changes.

• Fast Forward Steps—the next few lines of the report list the specific Hyper-
Retiming steps the Compiler implements to improve design performance. The
report numbers these lines in order of execution.

• Fast Forward Limit—the last line of the report lists the critical limiting factor
remaining after the Hyper-Retiming modifications are complete.
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Figure 112. Fast-Forward Details Report

5.1.3.3 Critical Chain Reports

Select any report line to display detailed information in the critical chain report. The
Base Performance step refers to the Retime Stage -> Retiming Limit Details report
that shows the current timing restrictions for this example design.

Fast-Forward Step #1 suggests significant improvement is achievable after removal
of asynchronous signals.

Figure 113. Fast-Forward Step #1

Removal of this asynchronous registers enables an estimated performance increase of
160MHz in the fMAX of this example design. The report provides the location of the
asynchronous signals for easy modification.

Click the Critical Chain at Limit tab in the Retiming Limit Details report to display
detailed descriptions of the path(s) responsible for fMAX limitations. In this example
design, some registers have the “REG (required)” distinction. This timing restriction is
related to the presence of asynchronous signals
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Figure 114. Critical Chain for Base Result

5.1.4 Step 4: Implement Fast-Forward Recommendations

Fast Forward Compile recommends Hyper-Retiming, Hyper-Pipelining, and Hyper-
Optimization in your design. Review and implement the suggested changes in your
design RTL to realize the predictive performance gains. After implementing RTL
changes, recompile the design and view the impact in the Compilation report.

Fast Forward Compile recommends RTL changes to improve performance. For
example, the presence of asynchronous signals (resets in the design) affect retiming
abilities. As a starting point for handing resets, ensure that resets are synchronous.
Refer to other sections of this document for detailed information about reset
strategies.
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Figure 115. Asynchronous Reset in State Machine RTL

Figure 116. Synchronous Reset in State Machine RTL

You can modify the RTL as suggested to improve performance. Asynchronous signals,
combination of short and long paths where extra registers are required, are common
RTL structures that limit design performance. Logical loops also present challenges for
design performance. The Compiler cannot retime any register into or out of a loop.
This restriction helps to ensure that Hyper-Retiming does not change the logic function
of the design.

After changes to synchronous reset, the design example still benefits from an addition
stage of pipeline registers. The Hyper-Retimer reports the specific location to add
these registers. You can add registers at either the path source or destination. The
Compiler choses the optimal location automatically.
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Figure 117. Fast Forward Compilation Improvement

RTL loops are one of the most significant factors impacting fMAX performance. You can
view more detail about this limit in the Fast Forward Limit report. The report lists the
paths in the loop and all the convergence points. Depending on the size of the loop, it
can be somewhat difficult to visualize from the report. You can alternatively visualize
the critical chains by Right-clicking ➤ Locate Critical Chain. The Technology Map
Viewer abstracts combinational logic with cloud icons. Expand this logic by clicking on
the + sign.

Figure 118. Fast Forward Limit
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As shown in the report, the loop involves register window_column_counter. We can
review and modify the RTL to improve performance.

Figure 119. Non-Optimized RTL

Notice that window_column_counter performs some arithmetic operations inside
multiple condition statements. However, the condition test is constant and can be
computed once. We can also pre-compute the window_column_counter + 1 on
each clock. This technique avoids arithmetic operations inside the critical chain loop,
and simply selects the result within the if-then-else statement. This strategy results in
a more efficient implementation.
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Figure 120. Optimized RTL

After making RTL changes, click Processing ➤ Start Compilation to compile the
design. Correcting the asynchronous reset conditions, adding pipeline stages, and
avoiding large loops significantly improves this design example performance, from
500MHz to 1GHz.
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Figure 121. Fast Forward Details Report
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6 Optimization Example
This section contains a round robin scheduler optimization example.

6.1 Round Robin Scheduler

The round robin scheduler is a basic functional block. The following basic example
uses a modulus operator as part of the logic to determine the next client for service.
The modulus operator can be relatively slow and area inefficient because it performs
division.

Example 15. Source Code for Round Robin Scheduler

The module is instantiated in a register ring and compiled.

module round_robin_modulo # (
            parameter LOG2_CLIENTS  = 3,
            parameter CLIENTS       = 7)
  { 
    // previous client to be serviced
       input wirte [LOG2_CLIENTS -1:0]  last,

    // Client requests:- 
       input wire [CLIENTS -1:0] requests,

    // Next client to be serviced: -
       output reg [LOG2_CLIENTS -1:0] next,

};

//Schedule the next client in a round robin fashion, based on the previous

always @*
begin
   integer J, K;

   begin : find_next
   next = last; // Default to staying with the previous
   for (J = 1; J < CLIENTS; J=J+1)
      begin
      K = (last + J) % CLIENTS;
      if (requests[K] == 1'b1)
         begin
         next = K[0 +: Log2_CLIENTS];
         disable find_next;
       end
      end   // of 'find_next'
     end

 endmodule

6 Optimization Example

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html


Figure 122. Fast Forward Compile Report for Round Robin Scheduler

The critical chain for the base performance, without Fast Forward optimizations,
identifies as the performance limiting critical chain because of insufficient registers.
The chain is from the register that connects to the last input, through the modulus
operator implemented with an LPM_DIVIDE IP core, to the register connected to the
next output.

Figure 123. Critical Chain for Base Performance for Round Robin Scheduler

The 66 elements in the critical chain above, correspond to the circuit diagram below
with 13 levels of logic. The modulus operator contributes significantly to the low
performance. Nine of the 13 levels of logic are part of the implementation for the
modulus operator.

Figure 124. Schematic for Critical Chain

Fast Forward Compile estimates a 70% performance improvement from adding two
pipeline stages at the module inputs, to be retimed through the logic cloud. At this
point, the critical chain is a short path/long path and it involves the modulus operator.
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Figure 125. Critical Chain Fast Forward Compile for Round Robin Scheduler

The performance can improve with additional manual changes to the source code. The
divider in the modulus operation is the bottleneck for focus. Paths through the divider
exist in the critical chain for all steps in the Fast Forward compile.

A better approach is to consider alternate implementations to calculate the next client
to service, to avoid the modulus operator. If you switch to an implementation that
specifies the number of clients as a power of two, a modulus operator is not required
to determine the next client to service. When you instantiate the module with fewer
than 2n clients, tie the unused request inputs to logic 0.

Example 16. Source Code for Round Robin Scheduler with Improved Performance with 2n

Client Inputs

module round_robin # (
           parameter LOG2_CLIENTS = 3,
           parameter CLIENTS = 2**LOG2_CLIENTS)

6 Optimization Example

Stratix 10 High-Performance Design Handbook
113



        {
          // Previous client to be serviced:-
           input wire [LOG2_CLIENTS -1:0] last,
 
          // Client requests:- 
           input wire [CLIENTS -1:0] requests,
        
         // Next client to be serviced:- 
           output reg [LOG2_CLIENTS -1:0] next
        };

       //Schedule the next client in a round robin fashion, based on the previous
           always @(next or last or requests)
           begin
              integer J,K;
              
               begin : find_next
               next = last; // Default to staying with the previous
               for (J=1; J<CLIENTS; J = J+1)
                  begin
                   K = last + J;
                    if (requests[k]0 +: LOG2_CLIENTS]] == 1'b1)
                       begin
                       next = K[0 +: LOG2_CLIENTS];
                       disable find_next;
                       end
                     end
                  end// of 'find_next'
               end

           endmodule

Even without any Fast Forward optimizations, this round robin implementation runs
almost 15% faster than the best Fast Forward Compile result from the version with the
modulus operator.

Figure 126. Fast Forward Compile Report for Round Robin Scheduler with Improved
Performance with 2n Client Inputs

Without any Fast Forward optimization (the Base Performance step), the critical chain
in this version also has the performance limiting reason of insufficient registers.
Although critical chains in both versions contain only two registers, the critical chain
for the 2n version contains only 38 elements, compared to 66 elements in the modulus
version.
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Figure 127. Critical Chain for Round Robin Scheduler with Improved Performance

The 38 elements in the critical chain above correspond to the following circuit diagram
with only four levels of logic.

Figure 128. Schematic for Critical Chain with Improved Performance

By adding two register stages at the input, to be retimed through the logic cloud, Fast
Forward Compile takes the circuit performance to 1 GHz, which is the architectural
limit of Stratix 10 devices. As with the modulus version, the final critical chain after
Fast Forward Optimization has a limiting reason of short path/long path, but the
performance is double the performance of the modulus version.
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Figure 129. Critical Chain for Round Robin Scheduler with Best Performance

Figure 130. Schematic for Critical Chain with Best Performance

Removing the modulus operator and switching to a power-of-two implementation is a
very small design change that provides a dramatic performance increase.

• Use natural powers of two for math operations whenever possible

• Explore alternative implementations for seemingly basic functions.

In this example, changing the implementation of the round robin logic provided more
performance increase than adding pipeline stages.
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7 Glossary
Table 7. Glossary

Term/Phrase Description

Critical chain A critical chain is any design condition that prevents Hyper-Retiming
from improving performance. In Hyper-Retiming, the limiting factor may
include more than one register-to-register path in a chain. A critical
chain is a higher level abstraction of a critical path. You can analyze and
report critical paths in HyperFlex designs with the TimeQuest timing
analyzer.

Fast-corner timing analysis The TimeQuest timing analyzer performs multicorner timing analysis to
verify your design under a variety of operating conditions—such as
voltage, process, and temperature. Fast-corner analysis assumes best-
case timing conditions.

Fast-Forward Compilation Analyzes potential performance of HyperFlex architecture by virtually
moving registers (Hyper-Retiming) and adding pipeline registers (Hyper-
Pipelining). Fast-Forward Compilation identifies design bottlenecks for
Hyper-Optimization and identifies methods for further optimization.

Hyper-Aware design tools Intel design methodologies and tools that enable the Stratix 10
HyperFlex architecture.

HyperFlex architecture Stratix 10 device core architecture that includes additional registers,
called Hyper-Registers, everywhere throughout the core fabric. These
registers are available in every interconnect routing segment and at the
inputs of all functional blocks. The Hyper-Registers provide increased
bandwidth and improved area and power efficiency. With many more
registers that are easy to access, you can retime registers to eliminate
critical paths, add pipeline registers to remove routing delays, and
optimize your design for best-in-class performance.

Hyper-Optimization The process of analyzing and improving design performance by making
changes to the design that are enabled by retiming.

Hyper-Retiming Optimizes the placement of existing registers to balance the propagation
delay between the registers. Also performs sequential optimizations by
moving registers back and forward across combinational logic

Performance recommendations Fast Forward Compilation recommends design changes based on the
potential implementation of Hyper-Retiming and Hyper-Pipelining in your
design.

Retiming reports Reports the fMAX achievable with Hyper-Retiming and lists
recommendations to optimize the design.
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8 Document Revision History
This document has the following revision history.

Table 8. Document Revision History

Date Version Changes

2016.08.07 2016.08.07 • Added clock crossing and initial condition timing restriction details.
• Described true dual-port memory support and memory width ratio with

examples
• Updated code samples and narrative in Design Example Walk-through
• Added reference to provided Design Example files
• Re-branded for Intel
• Revised software name to Quartus Prime Pro – Stratix 10 Edition Beta.
• Updated for latest changes to software GUI and capabilities.

2016.03.16 2016.03.16 First public release.
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A Appendix: Clock Enables and Resets

A.1  Synchronous Resets and Limitations

Converting asynchronous resets to synchronous helps retiming, but there are still
performance restrictions. The ALM has a dedicated LAB-wide signal which is often
used for synchronous clears. Using the signal is determined by synthesis, but is
usually dependent on the signal’s fan-out. A synchronous clear with a small fan-out is
usually done in logic, while larger fan-outs use this dedicated signal. Even if the
dedicated synchronous clear is used, the register can still be pushed into Hyper-
Registers. This process is achieved through the bypass mode of the ALM register,
where a signal can go right up to the register and still bypass it. When the register is
bypassed, the sclr signal and other control signals can still be accessed.

In the following example, the LAB-wide synchronous clear feeds multiple ALM
registers. A Hyper-Register is available along the synchronous clear path for every
register.

Figure 131. Retiming Example for Synchronous Resets
Circles represent Hyper-Registers and rectangles represent ALM registers. An unfilled
object represents an unoccupied location and a blue-filled one is occupied.

LAB-Wide
Synchronous

Clear

a)

b)

c)

LAB-Wide
Synchronous

Clear

During retiming, the top register in row (a) is pushed right into a Hyper-Register. This
is achieved by bypassing the ALM register, but still using the SCLR logic that feeds that
register. When the LAB-wide SCLR signal is used, an ALM register must exist on the
data path, but it does not have to be used.
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The retimer pushes the register in row (b) left into its data path. The register is
pushed through a signal split of the data path and synchronous clear. So this register
must be pushed onto both nets, one in the data path and one in the synchronous clear
path. This can be implemented because each path has a Hyper-Register.

Retiming becomes complicated if another register is pushed forward into the ALM. As
shown in the following figure, a register from the asynchronous clear port and a
register from the data path must be merged together.

Figure 132. Retiming Example – Second Register Pushed out of ALM
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Because the register on the synchronous clear path is shared with other registers, the
register splits on the path to other synchronous clear ports as well.

Figure 133. Retiming Example – Register Splits on the Path to other Synchronous Clear
Ports

Before
Retiming

After
Retiming

In the following figure, the Hyper-Register at a synchronous clear is already being
used and cannot accept another register. In this case, you cannot retime this register
for the second time through the ALM.
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Figure 134. Retiming Example – Conflict at Synchronous Clear

Conflict

There are two key architectural components that make it easy to move an ALM
register with a synchronous clear forward or backward:

• The ability to bypass the ALM register

• A Hyper-Register on the synchronous clear path

If you want to push more registers through, retiming becomes difficult. Because of
this, performance improvement is expected to be better with asynchronous reset
removal than conversion to synchronous resets. Synchronous clears are often difficult
to retime because of their wide broadcast nature.

A.1.1  Synchronous Resets Summary

Synchronous clears can limit the amount of retiming. There are two issues with
synchronous clears that cause problems for retiming:

• A short path, usually going directly from the source register to the destination
register without any logic between them. This is not a problem by itself. Short
paths are normally good, because their positive slack can be retimed out to longer
paths, making the whole design run faster. But short paths are typically connected
to long data paths that must be retimed. By retiming lots of registers up and down
these long paths, registers are getting pushed down or pulled up this short path.
This issue isn’t a big problem in normal logic, but is aggravated because
synchronous clears typically have large fan-outs.

• Synchronous clears have large fan-outs. When an aggressive retiming requires
registers to be pushed up or down the synchronous clear paths, the paths can get
cluttered until they can no longer accept more registers. This situation results in
path length imbalances (also referred to as short path / long path), or no more
registers can be pulled from the synchronous clear paths.

Aggressive retiming is when a second register must be retimed through the ALM
register.
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Figure 135. Aggressive Retiming
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Consider an ALM register that has a synchronous clear signal, as shown in the picture
on the left. The middle picture shows that register has been retimed forward and the
ALM register is bypassed. The picture on the right shows the register being retimed
backwards, in which case a register must be pushed up the SCLR path. Because the
HyperFlex hardware has these special features, a dedicated Hyper-Register on the
SCLR path, and the ability to put the ALM register into bypass mode, you can push
and pull this register. If pushed forward, then you must pull a register down the SCLR
path and merge the two. If pushed back, then you must push a duplicate register up
the SCLR path. You can use both of these options. However, bottlenecks can be
created when multiple registers are pushing and pulling registers up and down the
synchronous clear routing.

In summary, be practical about where to use resets. Control logic mostly requires
synchronous reset. Logic that may not require a synchronous reset helps with timing.
Refer to the following guidelines for dealing with synchronous resets:

• When writing new code that needs to run at high speeds, avoid synchronous
resets wherever possible. This is generally in data path logic that either flushes
out while the system is in reset, or its values are ignored when the system comes
out of reset, until new, valid logic filters through.

• Control logic often requires a synchronous reset, so there is no avoiding it in that
situation.

• For existing logic that runs at high speeds, remove the resets wherever possible.
When you reach a point where you do not understand the logic well enough or
aren’t confident with how it behaves when reset, leave the synchronous reset in.
Only if it becomes a timing issue in your design should you spend time analyzing if
and how the synchronous clear can be removed.

• Pipeline the synchronous clear. This does not help if registers must be pushed
back, but can help when registers must be pulled forward into the data path.

• Duplicate synchronous clear logic for different hierarchies. This limits the fan-out
of the synchronous clear so that it can be retimed with the local logic. Again, this
may be done only after you determine the existing synchronous clear with a large
fan-out is limiting how the design can be retimed. This is not difficult to do on the
back-end because it does not change the design functionality.

• Duplicate synchronous clear for different clock domain and inverted clocks. This
can overcome some retiming restrictions due to boundary or multiple period
requirement issues.
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A.2 Retiming with Clock Enables

Like synchronous resets, clock enables use a dedicated LAB-wide resource that feed a
specific function in the ALM register. Similarly, the HyperFlex architecture has some
special logic that makes retiming logic with clock enables easier. However, wide
broadcast control signals such as clock enables (and synchronous clears) are difficult
to retime.

The following figure shows that the sequence of retiming moves for the asynchronous
clears in the Synchronous Resets and Limitations section apply to the clock enable
control signals.

Figure 136. ALM Representing Clock Enables

LAB-Wide
Clock Enable

LAB-Wide
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In the top circuit, there is a dedicated Hyper-Register on the clock enable path. If the
register needs to be pushed back, it must be split so that another register is pushed
up the clock enable path. Here, the Hyper-Register location can absorb it without
problem. These features allow an ALM register with a clock enable to be easily retimed
backward or forward (middle circuit), to improve timing. A useful feature of a clock
enable is that its logic is usually generated by synchronous signals, so that the clock
enable path can be retimed alongside the data path.
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Figure 137. Retiming Steps and Structure with an ALM register and Associated Hyper-
Registers

CLKEN

CLKEN

CLKEN

LUT

Hyper-Register

Used Register

Bypassed Register

Legend

The figure shows how the clock enable signal clken, which is a typical broadcast type
of control signal, gets retimed. In the top circuit, before retiming, an ALM register is
used. The Hyper-Registers on the clock enable and data paths are also used. In the
middle circuit, the ALM register has been retimed forward into a Hyper-Register
outside the ALM, into the routing fabric. The ALM register is still being used, but it is
not on the data path through the ALM. It is used to hold the previous value of the
register. The clock enable mux now selects between this previous value and the new
value based on the clock enable. The bottom diagram shows when a second register is
retimed forward from the clock enable and data paths into the ALM register. The ALM
register is now used in the path. This process can be repeated and multiple registers
can be iteratively retimed across an enabled ALM register.

The clock enable structure can be divided into the following three categories.

Related Links

Synchronous Resets and Limitations on page 119
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A.2.1 Example for Broadcast Control Signals

Broadcast control signals that fan out to large numbers of destinations can be a
limiting factor to retiming. Asynchronous clears can limit retiming due to silicon
support for certain register control signals. However, even synchronous signals, such
as synchronous clear and clock enable, can limit retiming when they are part of a
short path/long path critical chain. The use of a synchronous control signal is not a
limiting reason by itself; rather it is the structure of the circuit combined with the
particular placement.

To forward retime a register over a node, there must be a register available on all of
the node’s inputs. This requirement is the same for conventional retiming and Hyper-
Retiming. To retime register A over register B in the following diagram, a register must
be pulled from all inputs, including register C on the clock enable input. Additionally, if
a register is retimed down one side of a branch point, a copy of the register must be
retimed down all sides of a branch point. This requirement is the same for
conventional retiming and Hyper-Retiming.

Figure 138. Retiming through a Clock Enable

B
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C
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There is a branch point at the clock enable input of register B. The branch point
consists of additional fan-out to other destinations besides the clock enable that is
shown. To retime register A over register B, the operation is the same as the previous
diagram, but the presence of the branch point means that a copy of register C must
be retimed along the other side of the branch point, to register C.

Figure 139. Retiming through a Clock Enable with a Branch Point

CLKEN CLKEN

Retiming Example

The following diagrams combine the previous two steps to illustrate the process of a
forward Hyper-Retiming push in the presence of a broadcast clock enable signal or a
branch point.
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Figure 140. Retiming Example Starting Point
The Hyper-Retimer can move a retimed register into the Hyper-Registers.
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Hyper-Register
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Per the HyperFlex architecture, each register’s clock enable has one Hyper-Register
location at its input. Because of the placement and routing, the register-to-register
path includes three Hyper-Register locations. A different compilation could include
more or fewer Hyper-Register locations. Additionally, there are registers on the data
and clock enable inputs to this chain that can be retimed by the Hyper-Retimer. These
registers exist in the RTL, or can be specified with options described in Pipeline Stages
section.

One stage of the input registers are retimed into a Hyper-Register location between
the two registers. Figure 141 on page 126 shows one part of the Hyper-Retiming
forward push. One of the registers on the clock enable input is retimed over the
branch point, with a copy going to a Hyper-Register location at each clock enable
input.

Figure 141. Retiming Example Intermediate Point

CLKEN

Figure 142 on page 126 shows the positions of the registers in the circuit after the
Hyper-Retimer completes the forward push. The two registers at the inputs of the left
register have been retimed to a Hyper-register location. This diagram is functionally
equivalent to the two previous diagrams. The one Hyper-Register location at the clock
enable input of the second register remains occupied. There are no other Hyper-
Register locations on the clock enable path to the second register, yet there is still one
register at the inputs that could be retimed.

Figure 142. Retiming Example Ending Point
CLKEN
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Figure 143 on page 127 shows the register positions the Hyper-Retimer could use if it
were not limited by a short path/long path critical chain. However, because no Hyper-
Registers are available on the right-hand clock enable path, the Hyper-Retimer cannot
retime the circuit as shown in the diagram.

Figure 143. Retiming Example Limiting condition

CLKEN Short Path Limits
Performance

Because the clock enable path to the second register has no more Hyper-Register
locations available, it is be reported as the short path. Because the register-to-register
path is too long to operate above the reported performance, although having more
available Hyper-Register locations for the retimed registers, the path is reported as
the long path.

The example is intentionally simple to show the structure of a short path/long path
critical chain. In reality, a two-fan-out load is not the critical chain in a circuit.
However, broadcast control signals can become the limiting critical chains with higher
fan-out, and you should take steps to avoid or rewrite the structures.

Related Links

Appendix: Parameterizable Pipeline Modules on page 50

A.3  Resolving Short Paths

Traditionally, retiming registers that are close to each other can potentially trigger hold
violations at higher speeds.

The following figure shows how a short path can typically limit retiming. In this
example, forward retiming pushes a register onto two paths, but one path has an
available register for retiming, while the other does not.

Figure 144. Short Paths Limiting Retiming
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Register already used and not available for retiming

Register not used and available for retiming

Legend
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In the circuit on the left, if register #1 is to be retimed forward, the top path has an
available slot. However, the lower path can’t accept a retimed register because it is too
close to an adjacent register already in use, causing hold time violations. The place
and route tool is aware of these short paths, so it can route the registers to longer
paths, as shown in the circuit on the right. This practice ensures that sufficient slots
are available for retiming. This feature interacts with the Fast Forward Compile
feature.

The following two examples address short paths:

Case 1: A design works at 400 MHz and the Fast Forward Compile report recommends
adding a pipeline stage to reach 500 MHz and a second pipeline stage to achieve 600
MHz performance.

The limiting reason is the short path / long path. Add the recommended two-stage
pipelining to reach 600 MHz performance. Then, if the limiting reason is again short
path / long path, the router has reached a limitation in trying to fix the short paths in
the design. However, at this point you may have already reached your target
performance, or this is no longer the critical path.

Case 2: A design works at 400 MHz and the Fast Forward Compile report does not
make any recommendations to add pipeline stages.

If the short path / long path is the immediate limiting reason for retiming, the router
has reached a limitation in trying to fix the short paths. Adding pipeline stages to the
reported path does not help. You must optimize the design.

Retiming registers that are close to each other can potentially trigger hold violations at
higher speeds. The Compiler reports this situation in the retiming report under Path
Info. The Compiler also reports short paths if enough Hyper-Registers are not
available. When nodes involve both a short path and a long path, adding pipeline
registers to both paths helps with retiming.
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