

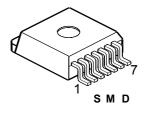
Smart Highside High Current Power Switch

Reversave™

 Reverse battery protection by self turn on of power MOSFET

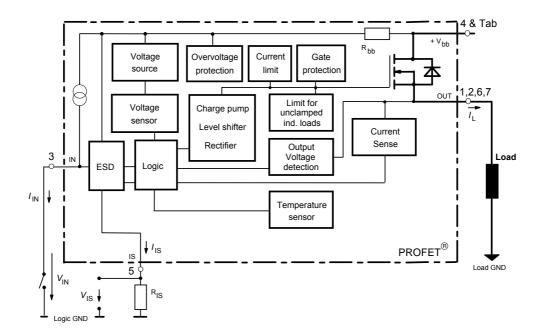
Features

- Overload protection
- Current limitation
- Short circuit protection
- Overtemperature protection
- Overvoltage protection (including load dump)
- Clamp of negative voltage at output
- Fast deenergizing of inductive loads ¹⁾
- Low ohmic inverse current operation
- Diagnostic feedback with load current sense
- Open load detection via current sense
- Loss of V_{bb} protection²⁾
- Electrostatic discharge (ESD) protection


Application

- Power switch with current sense diagnostic feedback for 12 V and 24 V DC grounded loads
- Most suitable for loads with high inrush current like lamps and motors; all types of resistive and inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

Product Summary


Operating voltage	Vbb(on)	5.0 34	V
On-state resistance	<i>R</i> on	6.0	$\text{m}\Omega$
Noinal current	<i>I</i> L(nom)	17	Α
Load current (ISO)	/L(ISO)	70	Α
Short circuit current limitation	/L(SC)	130	Α
Current sense ratio	<i>I</i> L : <i>I</i> IS	14 000	

TO 220-7

General Description

N channel vertical power FET with charge pump, current controlled input and diagnostic feedback with load current sense, integrated in Smart SIPMOS® chip on chip technology. Providing embedded protective functions.

¹⁾ With additional external diode.

²⁾ Additional external diode required for energized inductive loads (see page 8).

Pin	Symbol		Function
1	OUT	0	Output to the load. The pins 1,2,6 and 7 must be shorted with each other especially in high current applications! ³)
2	OUT	0	Output to the load. The pins 1,2,6 and 7 must be shorted with each other especially in high current applications! ³⁾
3	IN	I	Input, activates the power switch in case of short to ground
4	Vbb	+	Positive power supply voltage, the tab is electrically connected to this pin. In high current applications the tab should be used for the V _{bb} connection instead of this pin ⁴).
5	IS	S	Diagnostic feedback providing a sense current proportional to the load current; zero current on failure (see Truth Table on page 6)
6	OUT	0	Output to the load. The pins 1,2,6 and 7 must be shorted with each other especially in high current applications! ³⁾
7	OUT	0	Output to the load. The pins 1,2,6 and 7 must be shorted with each other especially in high current applications! ³⁾

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{ m bb}$	42	V
Supply voltage for short circuit protection, $T_{j,\text{start}}$ =-40+150°C: (E _{AS} limitation see diagram on page 9)	$V_{ m bb}$	34	V
Load current (short circuit current, see page 5)	<i>I</i> L	self-limited	Α
Load dump protection $V_{\text{LoadDump}} = V_{\text{A}} + V_{\text{S}}, V_{\text{A}} = 13.5 \text{ V}$			
$R_{\rm L}^{5} = 2 \Omega$, $R_{\rm L} = 0.54 \Omega$, $t_{\rm d} = 200 \rm ms$,	$V_{Load\ dump}^{6)}$	75	V
IN, IS = open or grounded			
Operating temperature range	Tj	-40+150	°C
Storage temperature range	$T_{ m stg}$	-55+150	
Power dissipation (DC), T _C ≤ 25 °C	P _{tot}	170	W
Inductive load switch-off energy dissipation, single pulse $V_{bb} = 12V$, $T_{j,start} = 150$ °C, $T_{C} = 150$ °C const., $I_{L} = 20$ A, $Z_{L} = 7.5$ mH, 0Ω , (see diagrams on page 9)	E _{AS}	1.5	J
Electrostatic discharge capability (ESD) Human Body Model acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993, C = 100 pF, R = 1.5 k Ω	V _{ESD}	4	kV
Current through input pin (DC)	I _{IN}	+15, -250	mA
Current through current sense status pin (DC) see internal circuit diagrams on page 7	l _{IS}	+15, -250	

Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability and decrease the current sense accuracy

Otherwise add about 0.3 m Ω to the R_{ON} if the pin is used instead of the tab.

 R_{l} = internal resistance of the load dump test pulse generator.

⁶⁾ V_{Load dump} is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839.

Thermal Characteristics

Parameter and Cond	Symbol	Values			Unit	
			min	typ	max	
Thermal resistance	chip - case:	R_{thJC^7}			0.75	K/W
	junction - ambient (free air):	R_{thJA}		60		
S			33			

Electrical Characteristics

Parameter and Conditions	Symbol		Values		Unit
at $T_j = -40 \dots +150 ^{\circ}\text{C}$, $V_{bb} = 12 ^{\circ}\text{V}$ unless otherwise specified		min	typ	max	·

Load Switching Capabilities and Characteristics

Load Switching Capabiliti	es and Characteristics					
On-state resistance (Tab to p	pins 1,2,6,7)					
$V_{IN} = 0$, $I_{L} = 20 \text{ A}$	$T_j = 25 ^{\circ}\text{C}$:	Ron		4.4	6.0	mΩ
	$T_{\rm j} = 150 {\rm ^{\circ}C}$:			7.9	10.5	
$V_{IN} = 0, I_{L} = 90 A$	$T_{\rm j} = 150 {\rm ^{\circ}C}$:				10.7	
$V_{bb} = 6V^{9}$, $V_{IN} = 0$, $I_{L} = 20 \text{ A}$	$T_{j} = 150 ^{\circ}\text{C}$:			10	17	
Nominal load current 10, (Ta	b to pins 1,2,6,7)					
ISO Proposal: $V_{ON} = 0.5 \text{ V}$	$T_{\rm C} = 85^{\circ}{\rm C}, T_{\rm j} \le 150^{\circ}{\rm C}^{11}$	$I_{L(ISO)}$	55	70		Α
SMD 8): $T_A = 85 ^{\circ}\text{C}$, $T_j \le 150 ^{\circ}$	$^{\circ}$ C $V_{ON} \le 0.5 \text{ V}$	$I_{L(NOM)}$	13.6	17		
Maximum load current in re	sistive range					
(Tab to pins 1,2,6,7)	$V_{\rm ON} = 1.8 \rm V, T_{\rm C} = 25 ^{\circ}\rm C:$	$I_{L(Max)}$	250			
see diagram on page 12	$I_{ON} = 1.8 \text{ V}, T_{C} = 150 ^{\circ}\text{C}$:		150			Α
Turn-on time ¹²⁾	I _{IN}	<i>t</i> on	150	230	470	μs
Turn-off time	$I_{\text{IN}} \perp$ to 10% V_{OUT} :	$t_{ m off}$	80	130	200	
$R_L = 1 \Omega$, $T_j = -40 + 150$ °C						
Slew rate on 12) (10 to 30%)	V _{OUT})	d V/dt _{on}	0.1	0.25	0.6	V/μs
$R_L = 1 \Omega$, $T_J = 25 ^{\circ}\text{C}$						
Slew rate off ¹²⁾ (70 to 40% V_{OUT})		-d V/dt _{off}	0.15	0.35	0.6	V/μs
$R_L = 1 \Omega$, $T_J = 25 °C$						
			•			

Thermal resistance R_{thCH} case to heatsink (about 0.5 ... 0.9 K/W with silicone paste) not included!

Bevice on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Decrease of V_{bb} below 10 V causes slowly a dynamic increase of R_{ON} to a higher value of R_{ON(Static)}. As long as V_{bIN} > V_{bIN(u) max}, R_{ON} increase is less than 10 % per second for T_J < 85 °C.</p>

not subject to production test, specified by design

 $^{^{11}}$) $T_{\rm J}$ is about 105°C under these conditions.

¹²) See timing diagram on page 13.

Parameter and Conditions	Symbol		Values	i	Unit	
at $T_j = -40 +150 ^{\circ}\text{C}$, $V_{bb} = 12 ^{\circ}\text{V}$ unless o	therwise specified		min	typ	max	
Inverse Load Current Operation						
On-state resistance (Pins 1,2,6,7 to p	oin 4)					
$V_{\text{bIN}} = 12 \text{ V}, I_{\text{L}} = -20 \text{ A}$	$T_j = 25 ^{\circ}\text{C}$:	R _{ON(inv)}		4.4	6.0	mΩ
see page 9	$T_{j} = 150 ^{\circ}\text{C}$:			7.9	10.5	
Nominal inverse load current (Pins 1,2,6,7 to Tab)		I _{L(inv)}	55	70		Α
$V_{ON} = -0.5 \text{V}, T_{C} = 85 ^{\circ}\text{C}^{11}$						
Drain-source diode voltage ($V_{out} > V_{L} = -20 \text{ A}, I_{IN} = 0, T_{J} = +150 ^{\circ}\text{C}$	/bb)	-V _{ON}		0.6		V
Operating Parameters						
Operating voltage (V _{IN} = 0) ^{9, 13})		$V_{ m bb(on)}$	5.0	-	34	V
Undervoltage shutdown 14)		$V_{bIN(u)}$	1.5	3.0	4.5	V
Undervoltage start of charge pump see diagram page 14)	V _{bIN(ucp)}	3.0	4.5	6.0	V
Overvoltage protection ¹⁵⁾	<i>T</i> _j =-40°C:	$V_{bIN(Z)}$	60			V
$I_{\rm bb} = 15\mathrm{mA}$	$T_{\rm j} = 25+150$ °C:		62	66		
Standby current	$T_{\rm j}$ =-40+25°C:	I _{bb(off)}		15	25	μΑ
$I_{IN} = 0$	$T_{\rm j} = 150^{\circ}{\rm C}$:			25	50	

If the device is turned on before a V_{bb} -decrease, the operating voltage range is extended down to $V_{bIN(u)}$. For all voltages 0 ... 34 V the device is fully protected against overtemperature and short circuit.

 $V_{\text{bIN}} = V_{\text{bb}} - V_{\text{IN}}$ see diagram on page 7. When V_{bIN} increases from less than $V_{\text{bIN}(u)}$ up to $V_{\text{bIN}(ucp)} = 5 \text{ V}$ (typ.) the charge pump is not active and $V_{\text{OUT}} \approx V_{\text{bb}} - 3 \text{ V}$.

See also $V_{\text{ON(CL)}}$ in circuit diagram on page 8.

Symbol	Values			Unit
	min	typ	max	
I _{L(SC)}		110		Α
I _{L(SC)}	45	130	180	
I _{L(SC)}		115		
-V _{OUT(CL)}	14	17	20	V
V _{ON(CL)}	39	42	47	V
T _{jt}	150			Ŝ
$\Delta T_{\rm jt}$		10		K
- V _{bb}			32	V
R _{ON(rev)}		5.4	7.0	mΩ
, ,		8.9	12.3	
R _{bb}	-	120		Ω
<i>k</i> _{ILIS}	12 000 11 400 12 200 12 000 11 500 11 100 11 400 10 000 11 000	13 700 12 800 14 800 14 100 13 200 15 300 14 500 13 300 17 600 15 600	15 400 14 200 17 400 16 200 15 000 19 500 17 500 15 200 28 500 22 000	
	$I_{L(SC)}$ $I_{L(SC)}$ $I_{L(SC)}$ $I_{L(SC)}$ $V_{OUT(CL)}$ $V_{ON(CL)}$ I_{jt} I_{jt} I_{out}	Min Min	min typ	min typ max $I_{L(SC)}$ 110 $I_{L(SC)}$ 45 130 180 $I_{L(SC)}$ 115 -V_{OUT(CL)} 14 17 20 $V_{ON(CL)}$ 39 42 47 I_{jt} 150 I_{jt} 10 I_{Jt} 32 I_{I} 32 I_{I} 32 I_{I} 32 I_{I} 32 I_{I} I_{I} I_{I} I_{I} I_{I} I_{I} I_{I}

¹⁶) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

¹⁷) Short circuit is a failure mode. The device is not designed to operate continuously into a short circuit. The lifetime will be reduced under such conditions.

This output clamp can be "switched off" by using an additional diode at the IS-Pin (see page 7). If the diode is used, V_{OUT} is clamped to V_{bb}- V_{ON(CL)} at inductive load switch off.

The reverse load current through the intrinsic drain-source diode has to be limited by the connected load (as it is done with all polarity symmetric loads). Note that under off-conditions (I_{IN} = I_{IS} = 0) the power transistor is not activated. This results in raised power dissipation due to the higher voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Increasing reverse battery voltage capability is simply possible as described on page 8.

If V_{ON} is higher, the sense current is no longer proportional to the load current due to sense current saturation, see $I_{IS,lim}$.

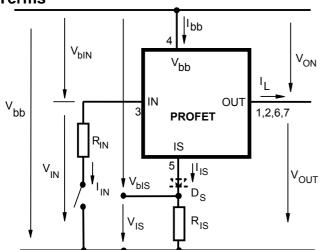
Parameter and Conditions	Symbol		Values	;	Unit
at $T_j = -40 \dots +150 ^{\circ}\text{C}$, $V_{bb} = 12 ^{\circ}\text{V}$ unless otherwise specified		min	typ	max	
Conce current acturation	1	6.5			A
Sense current saturation	I _{IS,lim}	0.5			mA
Current sense leakage current $I_{IN} = 0$:	I _{IS(LL)}			0.5	μΑ
$V_{\text{IN}} = 0, \ I_{\text{L}} \leq 0$:	I _{IS(LH)}		2		
Current sense overvoltage protection $T_j = -40$ °C:	$V_{bIS(Z)}$	60			V
$I_{bb} = 15 \text{ mA}$ $T_j = 25+150$ °C:		62	66		
Current sense settling time ²¹⁾	$t_{\rm S(IS)}$			500	μs
Input					
Input and operating current (see diagram page 12) IN grounded (V _{IN} = 0)	I _{IN(on)}		0.8	1.5	mA
Input current for turn-off ²²)	I _{IN(off)}			80	μΑ

Truth Table

	Input current	Output	Current Sense	Remark
	level	level	l _{IS}	
Normal	L	L	0	
operation	H	Н	nominal	=I _L / k _{ilis} , up to I _{IS} =I _{IS,lim}
Very high load current	Н	Н	I _{IS, lim}	up to V _{ON} =V _{ON(Fold back)} I _{IS} no longer proportional to I _L
Current- limitation	Н	Н	0	V _{ON} > V _{ON(Fold back)}
Short circuit to	L	L	0	
GND	Н	L	0	
Over-	L	L	0	
temperature	Н	L	0	
Short circuit to	L	Н	0	
V_{bb}	Н	Н	<nominal <sup="">23)</nominal>	
Open load	L	Z ²⁴)	0	
	Н	Н	0	
Negative output voltage clamp	L	L	0	
Inverse load	L	Н	0	
current	Н	Н	0	

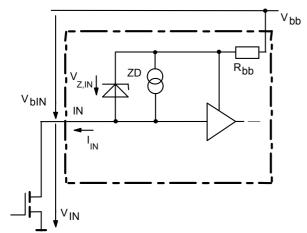
L = "Low" Level H = "High" Level

Overtemperature reset by cooling: $T_{j} < T_{jt}$ (see diagram on page 14)

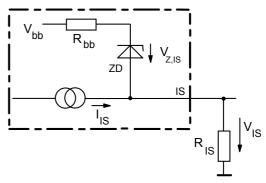

 $^{\,^{21}\!\}big)\,\,$ not subject to production test, specified by design

We recommend the resistance between IN and GND to be less than 0.5 $k\Omega$ for turn-on and more than $500k\Omega$ for turn-off. Consider that when the device is switched off (I_{IN} = 0) the voltage between IN and GND reaches almost V_{bb} . Low ohmic short to V_{bb} may reduce the output current I_L and can thus be detected via the sense current I_{IS} .

²⁴⁾ Power Transistor "OFF", potential defined by external impedance.



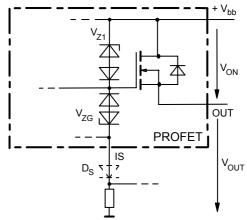
Terms


Two or more devices can easily be connected in parallel to increase load current capability.

Input circuit (ESD protection)

When the device is switched off ($I_{IN} = 0$) the voltage between IN and GND reaches almost V_{bb} . Use a mechanical switch, a bipolar or MOS transistor with appropriate breakdown voltage as driver. $V_{Z,IN} = 66 \text{ V}$ (typ).

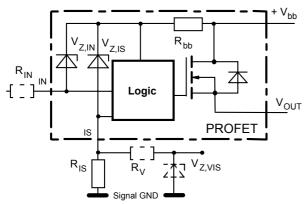
Current sense status output



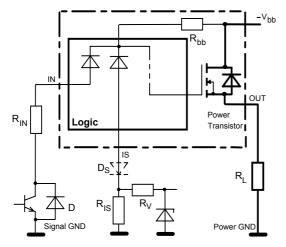
 $V_{\rm Z,IS} = 66 \, {\rm V}$ (typ.), $R_{\rm IS} = 1 \, {\rm k}\Omega$ nominal (or $1 \, {\rm k}\Omega$ /n, if n devices are connected in parallel). $I_{\rm S} = I_{\rm L}/k_{\rm ilis}$ can be driven only by the internal circuit as long as $V_{\rm out}$ - $V_{\rm IS} > 5 \, {\rm V}$. If you want measure load currents up to $I_{\rm L(M)}$, $R_{\rm IS}$

should be less than
$$\frac{V_{\rm bb}$$
 - 5 V}{I_{\rm L(M)} / $K_{\rm ilis}$

Note: For large values of $R_{\rm IS}$ the voltage $V_{\rm IS}$ can reach almost $V_{\rm bb}$. See also overvoltage protection. If you don't use the current sense output in your application, you can leave it open.


Inductive and overvoltage output clamp

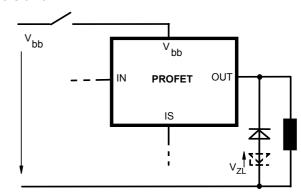
 V_{ON} is clamped to $V_{ON(Cl)}$ = 42 V typ. At inductive load switch-off without $D_S,\ V_{OUT}$ is clamped to $V_{OUT(CL)}$ = -19 V typ. via $V_{ZG}.$ With $D_S,\ V_{OUT}$ is clamped to V_{bb} - $V_{ON(CL)}$ via $V_{Z1}.$ Using D_S gives faster deenergizing of the inductive load, but higher peak power dissipation in the PROFET. In case of a floating ground with a potential higher than 19V referring to the OUT – potential the device will switch on, if diode DS is not used.



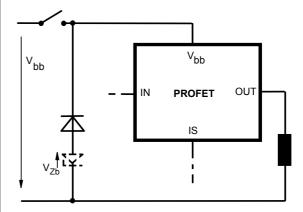
Overvoltage protection of logic part

 R_{bb} = 120 Ω typ., $V_{Z,IN}$ = $V_{Z,IS}$ = 66 V typ., R_{IS} = 1 k Ω nominal. Note that when overvoltage exceeds 71 V typ. a voltage above 5V can occur between IS and GND, if R_V , $V_{Z,VIS}$ are not used.

Reverse battery protection

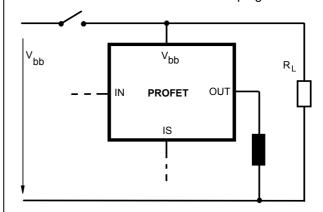

 $R_{V} \ge 1 \, \mathrm{k}\Omega$, $R_{IS} = 1 \, \mathrm{k}\Omega$ nominal. Add R_{IN} for reverse battery protection in applications with V_{bb} above $16 \, \mathrm{V}^{19}$); recommended value: $\frac{1}{R_{IN}} + \frac{1}{R_{IS}} + \frac{1}{R_{V}} = \frac{0.1 \, \mathrm{A}}{|V_{bb}| - 12 \, \mathrm{V}}$ if D_{S} is not used (or $\frac{1}{R_{IN}} = \frac{0.1 \, \mathrm{A}}{|V_{bb}| - 12 \, \mathrm{V}}$ if D_{S} is used).

To minimize power dissipation at reverse battery operation, the summarized current into the IN and IS pin should be about 120mA. The current can be provided by using a small signal diode D in parallel to the input switch, by using a MOSFET input switch or by proper adjusting the current through $R_{\rm IS}$ and $R_{\rm V}$.

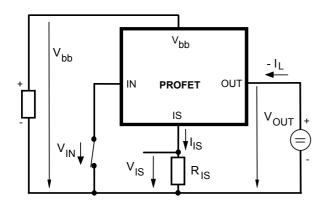

V_{bb} disconnect with energized inductive load

Provide a current path with load current capability by using a diode, a Z-diode, or a varistor. (V_{ZL} < 72 V or V_{Zb} < 30 V if R_{IN}=0). For higher clamp voltages currents at IN and IS have to be limited to 250 mA.

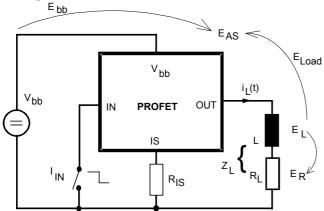
Version a:



Version b:


Note that there is no reverse battery protection when using a diode without additional Z-diode V_{ZL} , V_{Zb} .

Version c: Sometimes a neccessary voltage clamp is given by non inductive loads $R_{\rm L}$ connected to the same switch and eliminates the need of clamping circuit:


Inverse load current operation

The device is specified for inverse load current operation ($V_{\rm OUT} > V_{\rm bb} > 0V$). The current sense feature is not available during this kind of operation ($I_{\rm IS} = 0$). With $I_{\rm IN} = 0$ (e.g. input open) only the intrinsic drain source diode is conducting resulting in considerably increased power dissipation. If the device is switched on ($V_{\rm IN} = 0$), this power dissipation is decreased to the much lower value $R_{\rm ON(INV)} * P$ (specifications see page 4).

Note: Temperature protection during inverse load current operation is not possible!

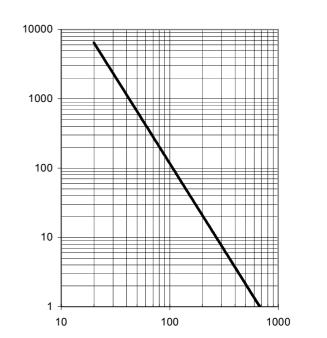
Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$E_L = \frac{1}{2} \cdot L \cdot I_L^2$$

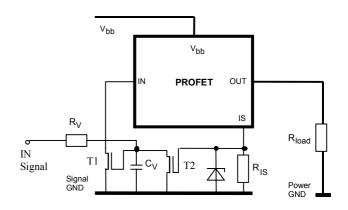
While demagnetizing load inductance, the energy dissipated in PROFET is

$$E_{AS} = E_{bb} + E_L - E_R = V_{ON(CL)} \cdot i_L(t) dt$$


with an approximate solution for $R_L > 0 \Omega$:

$$E_{AS} = \frac{I_{L} \cdot L}{2 \cdot R_{L}} \left(V_{bb} + |V_{OUT(CL)}| \right) ln \left(1 + \frac{I_{L} \cdot R_{L}}{|V_{OUT(CL)}|} \right)$$

Maximum allowable load inductance for a single switch off


$$L = f(I_L)$$
; T_{j,start} = 150°C, V_{bb} = 12 V, R_L = 0 Ω

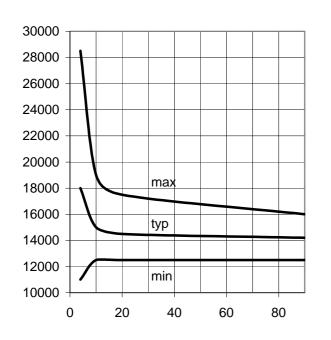
Externally adjustable current limit

If the device is conducting, the sense current can be used to reduce the short circuit current and allow higher lead inductance (see diagram above). The device will be turned off, if the threshold voltage of T2 is reached by I_s*R_{ls} . After a delay time defined by R_v*C_v T1 will be reset. The device is turned on again, the short circuit current is defined by $I_{L(SC)}$

Options Overview

Type BTS	6510P	550P 650P	555
Overtemperature protection with hysteresis	Х	Χ	Χ
T _j >150 °C, latch function ²⁵)			Χ
$T_{\rm j}$ >150 °C, with auto-restart on cooling	Х	Х	
Short circuit to GND protection			
with overtemperature shutdown	Х		
switches off when $V_{\text{ON}} > 6 \text{ V typ.}$ (when first turned on after approx. 180 μ s)		Х	Χ
Overvoltage shutdown	-	-	-
Output negative voltage transient limit			
to V _{bb} - V _{ON(CL)}	X	Х	X
to $V_{OUT} = -19 \text{ V typ}$	X ²⁶)	X ²⁶)	X ²⁶)

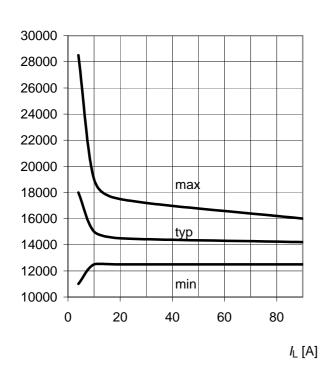
Latch except when $V_{\rm bb}$ - $V_{\rm OUT}$ < $V_{\rm ON(SC)}$ after shutdown. In most cases $V_{\rm OUT}$ = 0 V after shutdown ($V_{\rm OUT}$ \neq 0 V only if forced externally). So the device remains latched unless $V_{\rm bb}$ < $V_{\rm ON(SC)}$ (see page 5). No latch between turn on and $t_{d(SC)}$.


Can be "switched off" by using a diode D_S (see page 8) or leaving open the current sense output.

Characteristics

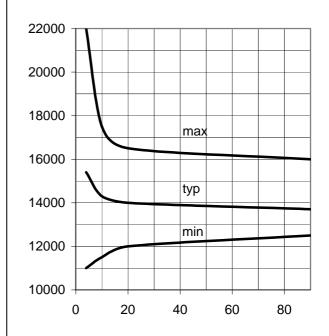
Current sense versus load current:

 $I_{IS} = f(I_L), T_J = -40 \dots +150 \text{ °C}$



IIS [mA]

/∟ [A]

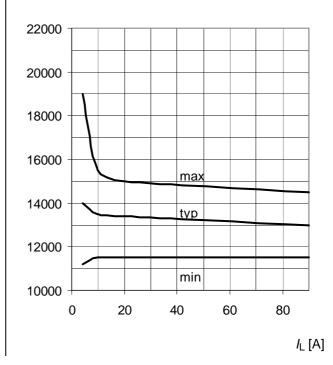

Current sense ratio:

$$K_{\text{ILIS}} = f(I_{\text{L}}), T_{\text{J}} = -40^{\circ}\text{C}$$

 k_{Ilis}

Current sense ratio:

 $I_{IS} = f(I_L)$, T_J= 25 °C



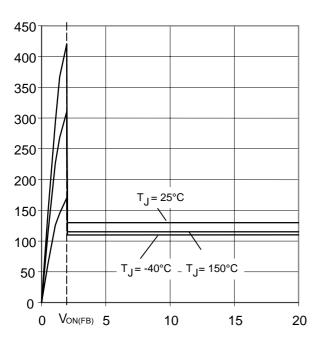
 k_{ILIS}

I∟ [A]

Current sense ratio:

$$K_{\text{ILIS}} = f(I_{\text{L}}), T_{\text{J}} = 150^{\circ}\text{C}$$

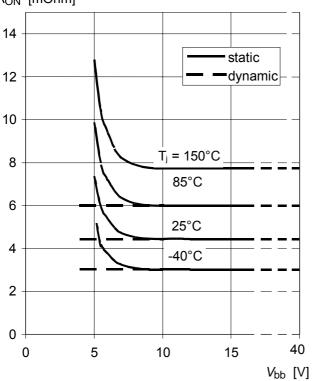
 k_{Ilis}



Typ. current limitation characteristic

 $I_L = f(Von, T_i)$

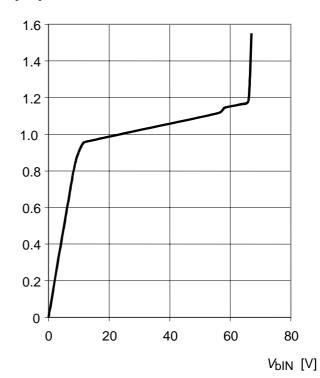
I∟ [A]



Von [V]

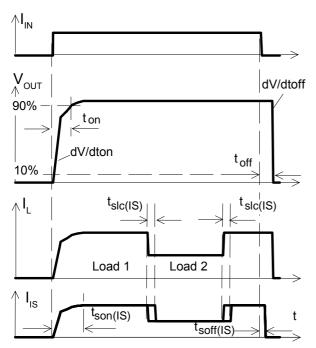
Typ. on-state resistance

 $R_{ON} = f(V_{bb}, T_j); I_L = 20 \text{ A}; V_{IN} = 0$


RON [mOhm]

Typ. input current

 $I_{\text{IN}} = f(V_{\text{bIN}}), V_{\text{bIN}} = V_{\text{bb}} - V_{\text{IN}}$


IN [mA]

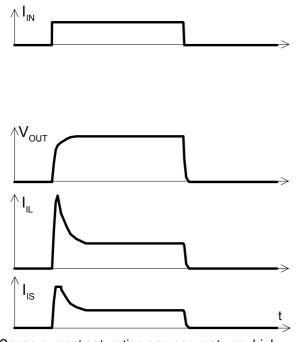

Timing diagrams

Figure 1a: Switching a resistive load, change of load current in on-condition:

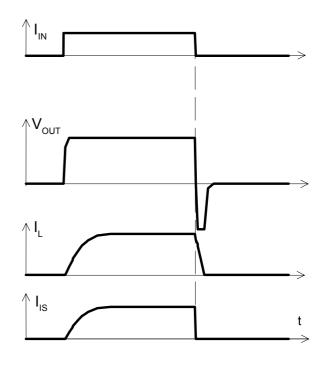
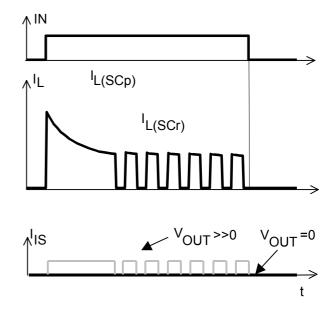

The sense signal is not valid during a settling time after turn-on/off and after change of load current.

Figure 2b: Switching motors and lamps:



Sense current saturation can occur at very high inrush currents (see I_{IS,lim} on page **Fehler! Textmarke nicht definiert.**).

Figure 2c: Switching an inductive load:

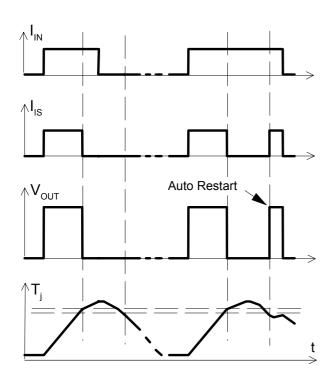


Figure 3d: Short circuit: shut down by overtemperature detection with auto restart on cooling

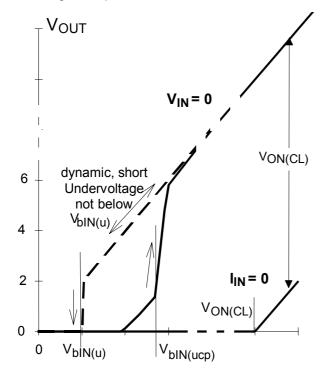
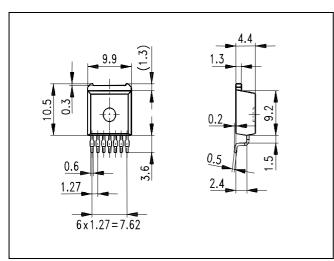
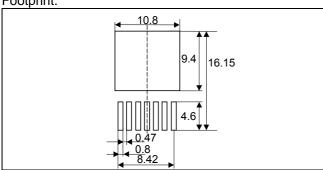


Figure 4e: Overtemperature Reset if $T_j < T_{jt}$

Figure 6f: Undervoltage restart of charge pump, overvoltage clamp


Package and Ordering Code

All dimensions in mm


SMD TO 220-7,

Ordering code

BTS 6510 B T&R: Q67060-S6311

Footprint:

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.