

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

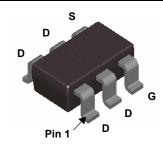
FDC637BNZ N-Channel 2.5V Specified PowerTrench[®] MOSFET

20V, 6.2A, 24mΩ

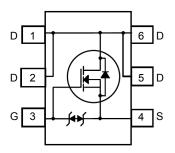
Features

- Max $r_{DS(on)}$ = 24m Ω at V_{GS} = 4.5V, I_D = 6.2A
- Max $r_{DS(on)}$ = 32m Ω at V_{GS} = 2.5V, I_D = 5.2A
- Fast switching speed
- Low gate charge (8nC typical)
- High performance trench technology for extremely low r_{DS(on)}
- SuperSOT[™]–6 package: small footprint (72% smaller than standard SO-8; low profile (1mm thick)
- HBM ESD protection level > 2kV typical (Note 3)
- Manufactured using green packaging material
- Halide-Free
- RoHS Compliant

General Description


This N-Channel 2.5V specified MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

September 2007


These devices have been designed to offer exceptional power dissipation in a very small footprint compared with bigger SO-8 and TSSOP-8 packages.

Applications

- DC DC Conversion
- Load switch
- Battery Protection

SuperSOT[™] -6

MOSFET Maximum Ratings TA= 25°C unless otherwise noted

Symbol	Pa	Ratings	Units		
V _{DS}	Drain to Source Voltage	20	V		
V _{GS}	Gate to Source Voltage			±12	V
I _D	Drain Current -Continuous	T _A = 25°C	(Note 1a)	6.2	•
	-Pulsed			20	A
P _D	Power Dissipation	T _A = 25°C	(Note 1a)	1.6	14/
	Power Dissipation	T _A = 25°C	(Note 1b)	0.8	W
Γ _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	156	C/vv	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.637Z	FDC637BNZ	SSOT6	7"	8mm	3000 units

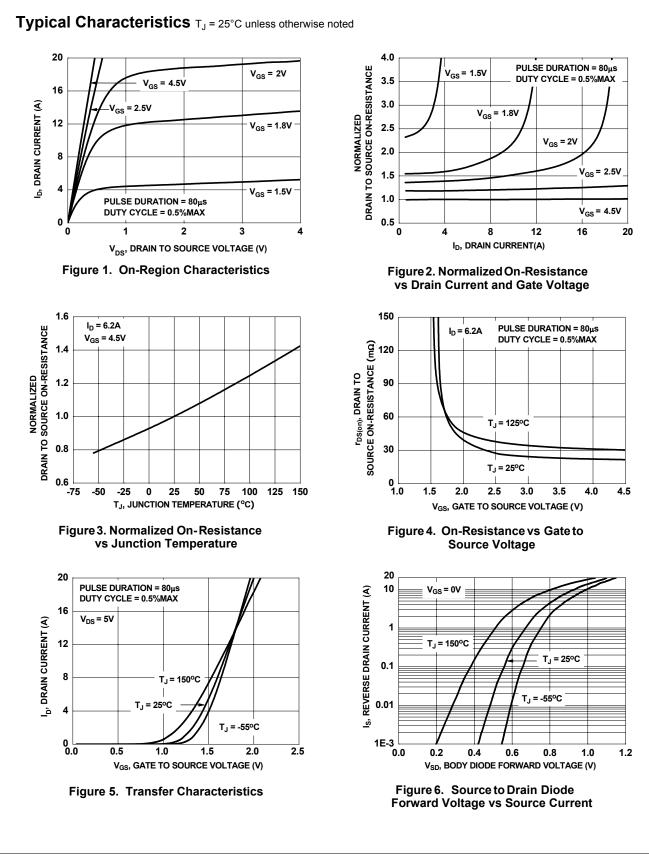
 Мах	Units
	V
	mV/°C
1	μΑ μΑ
±10	μA
1.5	V
	mV/°C
24	
32	mΩ
41	
	S
895	pF
215	pF
175	pF
	Ω
16	ns
12	ns
36	ns
12	ns

FDC637BNZ N-Channel 2.5V Specified PowerTrench[®] MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16V, V_{GS} = 0V$			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±10	μA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	0.6	0.8	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		-3		mV/°C
		V _{GS} = 4.5V, I _D = 6.2A		21	24	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 2.5V, I _D = 5.2A		26	32	mΩ
		V _{GS} = 4.5V, I _D = 6.2A, T _J = 125°C		30	41	
9 _{FS}	Forward Transconductance	$V_{DD} = 5V, I_D = 6.2A$		27		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V = 40V/V = 0V/		670	895	pF
C _{oss}	Output Capacitance	V _{DS} = 10V, V _{GS} = 0V, f = 1MHz	215	pF		
C _{rss}	Reverse Transfer Capacitance	-1 - 1101112		115	175	pF
R _g	Gate Resistance	f = 1MHz		2.1		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			8	16	ns
a(011)	Rise Time	V _{DD} = 10V, I _D = 6.2A		6	12	ns
t _r		V_{GS} = 4.5V, R_{GEN} = 6 Ω		22	36	ns
t _r t _{d(off)}	Turn-Off Delay Time	V_{GS} = 4.5V, R_{GEN} = 6 Ω		~~		
t _r t _{d(off)} t _f		- V _{GS} = 4.5V, R _{GEN} = 6Ω 		6	12	ns
t _{d(off)} t _f	Turn-Off Delay Time				12 12	ns nC
t _{d(off)} t _f Q _g	Turn-Off Delay Time Fall Time	V _{GS} = 4.5V, V _{DD} = 10V,		6		
t _{d(off)} t _f	Turn-Off Delay Time Fall Time Total Gate Charge			6 8		nC
t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-Off Delay TimeFall TimeTotal Gate ChargeGate to Source Gate ChargeGate to Drain "Miller" Charge	V _{GS} = 4.5V, V _{DD} = 10V,		6 8 1.3		nC nC
$\begin{array}{c} t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge	$V_{GS} = 4.5V, V_{DD} = 10V,$ $I_{D} = 6.2A$		6 8 1.3		nC nC
$\begin{array}{c} t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain-Source Diode	$V_{GS} = 4.5V, V_{DD} = 10V,$ $I_D = 6.2A$		6 8 1.3	12	nC nC nC
$\begin{array}{c} t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \end{array}$	Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 4.5V, V_{DD} = 10V,$ $I_D = 6.2A$		6 8 1.3 2.2	12	nC nC nC

mined by 1 the user's board design.

a. 78°C/W when mounted on a 1 in² pad of 2 oz copper.



b. 156°C/W when mounted on a minimum pad of 2 oz copper.

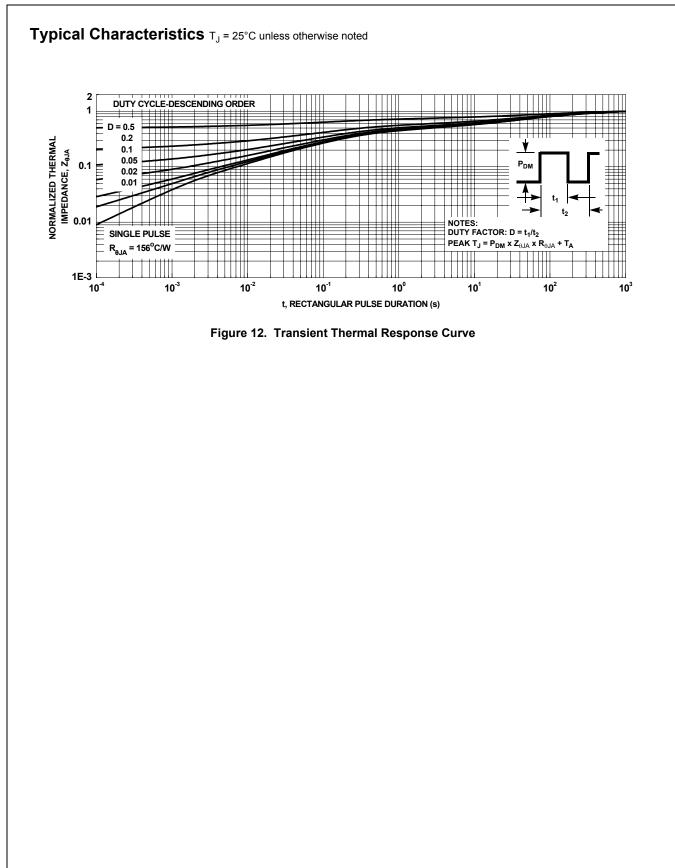
2. Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

©2007 Fairchild Semiconductor Corporation FDC637BNZ Rev.C

©2007 Fairchild Semiconductor Corporation FDC637BNZ Rev.C

3


www.fairchildsemi.com

FDC637BNZ Rev.C

www.fairchildsemi.com

FDC637BNZ N-Channel 2.5V Specified PowerTrench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACE $x^{\textcircled{B}}$ Build it Now TM CorePLUS TM CROSSVOLT TM CTL TM Current Transfer Logic TM EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FAST [®] FastvCore TM FPS TM FRFET [®] Global Power Resource SM	Green FPS™ Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® © PDP-SPM™ Power220®	Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P franchise TinyBoost [™] TinyBoost [™] TinyBoost [™] TinyLogic [®] TINYOPTO [™] TinyPOwer [™] TinyPOwer [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
--	---	---	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.			
		Rev. 13			

PRODUCT STATUS DEFINITIONS

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC