

Is Now Part of

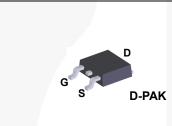
ON Semiconductor®

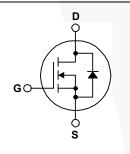
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

SEMICONDUCTOR®

November 2013


FQD7N10L N-Channel QFET[®] MOSFET 100 V, 5.8 A, 350 mΩ

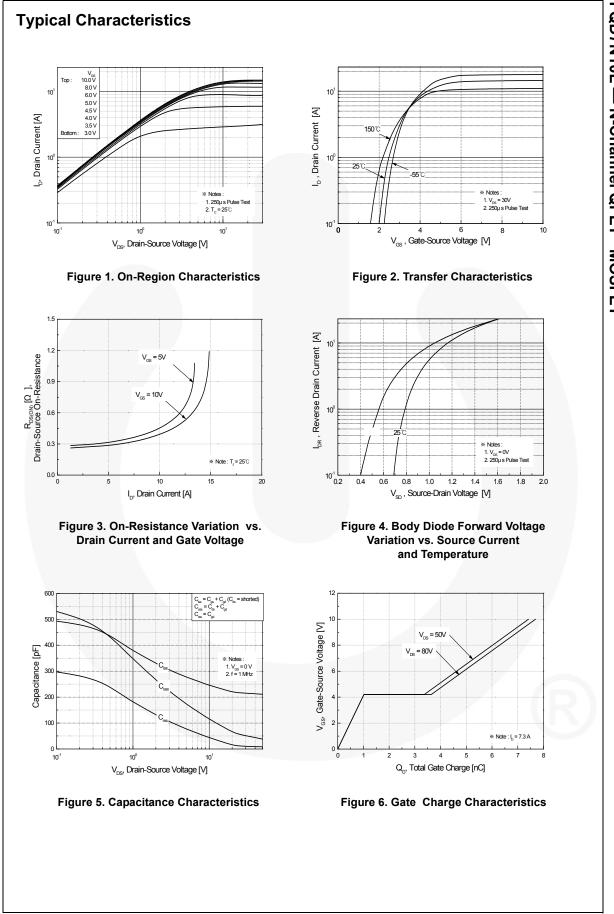

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

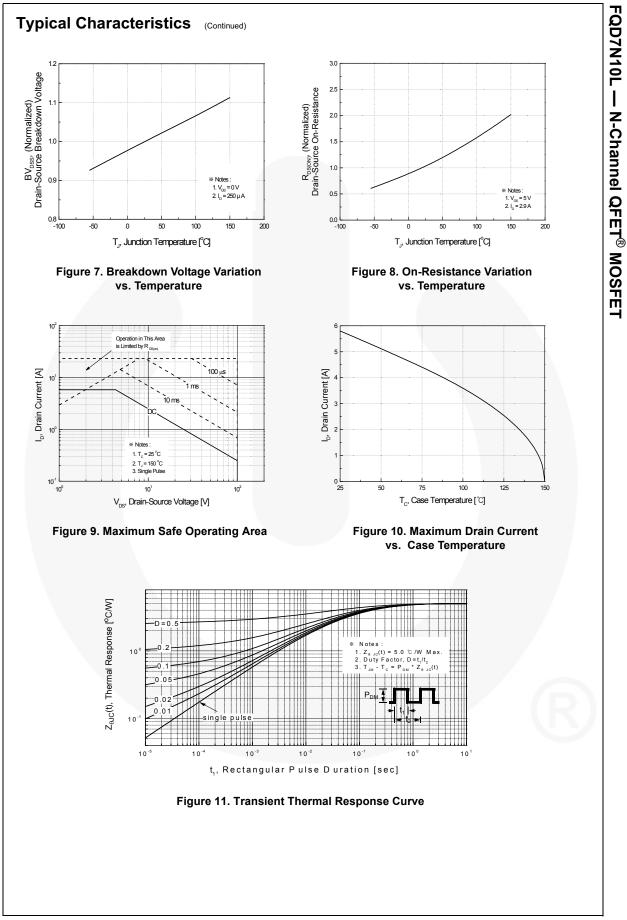
Features

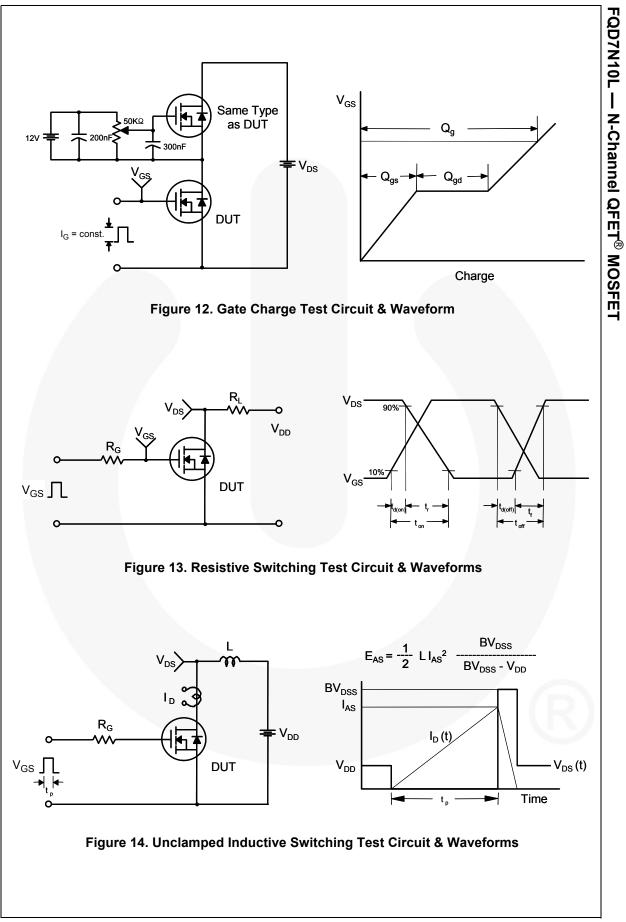
- 5.8 A, 100 V, ${\sf R}_{\sf DS(on)}$ = 350 m Ω (Max.) @ V_{\sf GS} = 10 V, ID = 2.9 A
- Low Gate Charge (Typ. 4.6 nC)
- Low Crss (Typ. 12 pF)
- 100% Avalanche Tested

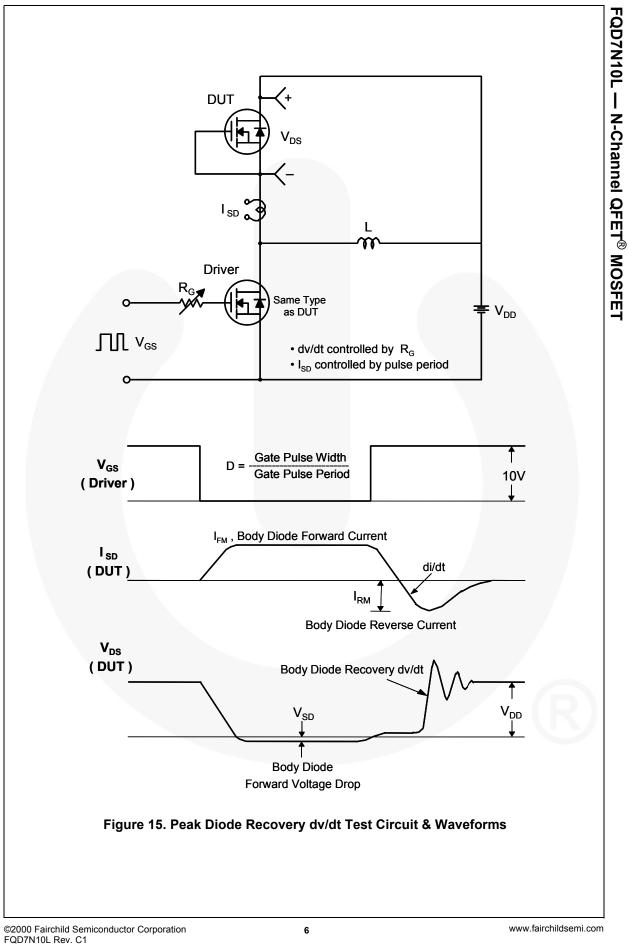
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

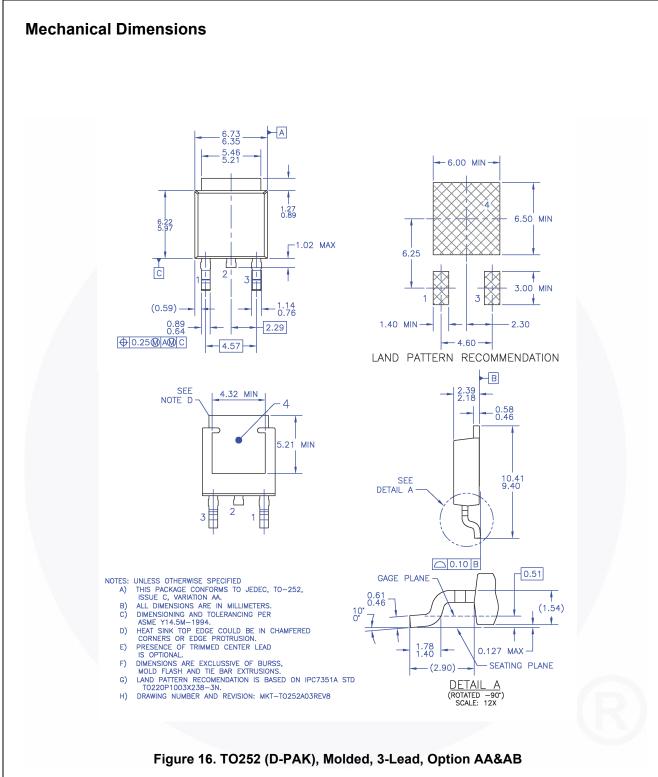

Symbol	Parameter		FQD7N10LTM	Unit	
V _{DSS}	Drain-Source Voltage		100	V	
I _D	Drain Current - Continuous (T _C = 25	°C)	5.8	A	
	- Continuous (T _C = 10	3.67	A		
I _{DM}	Drain Current - Pulsed	(Note 1)	23.2	A	
V _{GSS}	Gate-Source Voltage		± 20	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	50	mJ	
I _{AR}	Avalanche Current	(Note 1)	5.8	A	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	2.5	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns	
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W	
	Power Dissipation (T _C = 25°C)		25	W	
	- Derate above 25°C		0.2	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Ra	nge	-55 to +150		
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics


Symbol	Parameter	FQD7N10LTM	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	5.0	
Б	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50	


Symbol Symbol Off Char SVDSS ABVDSS ATJ	al Cha	FQD7N10L			age Packing Method	Reel Size		Tape Width		Quantity	
Symbol Off Char BV _{DSS} ABV _{DSS} AT _J	racterist	ractoristics .	QD7N10LTM FQD7N10L D-F		AK Tape and Reel 330		nm	16 mm		2500 units	
Symbol Off Char BV _{DSS} ABV _{DSS} AT _J	racterist	I acter istics	[_ = 25°C un	less otherv	vise noted.						
BV _{DSS} ΔBV _{DSS} ΔT _J		Parameter	C		Test Conditions		Min.	Тур.	Max.	Unit	
BV _{DSS} ΔBV _{DSS} ΔT _J		ice									
ΔBV_{DSS} ΔT_{J}		irce Breakdown Volt	ade	V _{GS} =	0 V, I _D = 250 μA		100			V	
DSS	Breakdown Voltage Temperature Coefficient		I_D = 250 μ A, Referenced to 25°C			0.1		V/°C			
	Zero Gate Voltage Drain Current		$V_{DS} = 100 V, V_{GS} = 0 V$ $V_{DS} = 80 V, T_{C} = 125^{\circ}C$				1 10	μA μA			
GSSF	Gate-Body	Gate-Body Leakage Current, Forward		$V_{GS} = 20 V, V_{DS} = 0 V$					100	nA	
		Gate-Body Leakage Current, Reverse		$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA		
	racterist			65							
		shold Voltage	_	V _{DS} =	V _{GS} , I _D = 250 μA	-	1.0		2.0	V	
R _{DS(on)}	Static Drain-Source On-Resistance			$V_{GS} = 10 V, I_D = 2.9 A$ $V_{GS} = 5 V, I_D = 2.9 A$				0.275 0.300	0.35 0.38	Ω	
ØFS	Forward T	ransconductance	_	$V_{\rm DS} = 30 \text{ V}, \text{ I}_{\rm D} = 2.9 \text{ A}$				4.6		S	
	c Charac	cteristics									
-	Input Cap		_	N -	25.1/1/ - 0.1/			220	290	pF	
	Output Ca		_	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			55	72	pF		
		ransfer Capacitance	`	1 – 1.0	I = 1.0 WHZ			12	15	pF	
r d(off)	Turn-On F Turn-Off D	Delay Time		V _{DD} = R _G = 2	50 V, I _D = 7.3 A, 25 Ω	(Note 4)		100 17	210 45	ns ns	
f	Turn-Off F	· · · · · · · · · · · · · · · · · · ·				. ,		50 4.6	110 6.0	ns nC	
	Total Gate Charge			$V_{\rm DS}$ = 80 V, I _D = 7.3 A,				4.0	0.0	nC	
Qg		reo Chargo	Gate-Source Charge		$V_{GS} = 5 V$ (Note 4)			2.6		-	
λ _g λ _{gs}	Gate-Sou					(Note 4)				nC	
ລ _g ລ _{gs} ລ _{gd} Drain-Sc	Gate-Sour Gate-Drai	n Charge ode Characteri			kimum Ratings	(Note 4)	-	2.0		nC	
ລ _g ລ _{gs} ລ _{gd} Drain-Sc	Gate-Sour Gate-Drai Durce Di Maximum	n Charge ode Characteri Continuous Drain-S	Source Dic	de Forv	vard Current	(Note 4)				nC A	
Ω _g Ω _{gs} Ω _{gd} Drain-Sc s	Gate-Sour Gate-Drai Durce Di Maximum Maximum	n Charge ode Characteri Continuous Drain-S Pulsed Drain-Sourc	Source Dic e Diode F	ode Forv orward	vard Current Current	(Note 4)			23.2	A A	
Q _g Q _{gs} Q _{gd} Drain-Sc s SM V _{SD}	Gate-Sour Gate-Drai Durce Di Maximum Maximum Drain-Sou	n Charge ode Characteri Continuous Drain-S Pulsed Drain-Sourc rrce Diode Forward	Source Dic e Diode F	ode Forv Forward V _{GS} =	vard Current Current 0 V, I _S = 5.8 A	(Note 4)		 		A	
Q _g Q _{gs} Q _{gd} Drain-Sc s SM V _{SD} π	Gate-Sour Gate-Drai Durce Di Maximum Maximum Drain-Sou Reverse F	n Charge ode Characteri Continuous Drain-S Pulsed Drain-Sourc	Source Dic e Diode F	ode Forv Forward V _{GS} = V _{GS} =	vard Current Current	(Note 4)			23.2	A A	


FQD7N10L — N-Channel QFET® MOSFET



FQD7N10L — N-Channel QFET[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

FQD7N10L — N-Channel QFET[®] MOSFET

Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 166

FQD7N10L —

N-Channel QFET[®] MOSFE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC