

Vishay Siliconix

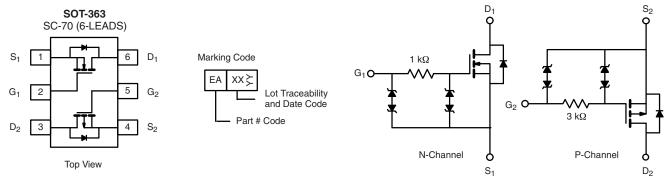
RoHS

FREE

Available

Complementary 20 V (D-S) Low-Threshold MOSFET

PRODUCT SUMMARY						
	V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A)			
N-Channel	20	0.280 at V _{GS} = 4.5 V	1.28			
		0.360 at V _{GS} = 2.5 V	1.13			
		0.450 at V _{GS} = 1.8 V	1			
P-Channel	- 20	0.490 at V _{GS} = - 4.5 V	- 1			
		0.750 at V _{GS} = - 2.5 V	- 0.81			
		1.10 at V _{GS} = - 1.8 V	- 0.67			


/ISHA

FEATURES

- TrenchFET[®] Power MOSFETS: 1.8 V Rated
- ESD Protected: 2000 V
- Thermally Enhanced SC-70 Package
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Load Switching
- PA Switch
- Level Switch

Ordering Information: Si1563EDH-T1-E3 (Lead (Pb)-free) Si1563EDH-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)							
			N-Channel		P-Channel		
Parameter		Symbol	5 s	Steady State	5 s	Steady State	Unit
Drain-Source Voltage		V _{DS}	20		- 20		v
Gate-Source Voltage		V _{GS}		± 12	± 12		v
Continuous Drain Current (T 150 °C)	T _A = 25 °C	- I _D	1.28	1.13	- 1	- 0.88	
Continuous Drain Current ($T_J = 150 \ ^\circ C$)	T _A = 85 °C		0.92	0.81	- 0.72	- 0.63	
Pulsed Drain Current		I _{DM}	4		- 3		A
Continuous Source Current (Diode Conduction) ^a		۱ _S	0.61	0.48	- 0.61	- 0.48	
	T _A = 25 °C	P _D	0.74	0.57	0.30	0.57	w
Maximum Power Dissipation ^a	T _A = 85 °C		0.38	0.30	0.16	0.3	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150				°C

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^a	$t \le 5 s$	P	130	170			
Waximum Junction-to-Ambient	Steady State	R _{thJA}	170	220	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	80	100	1		

Notes:

a. Surface mounted on 1" x 1" FR4 board.

Document Number: 71416 For more information S12-1258-Rev. E, 21-May-12

Vishay Siliconix

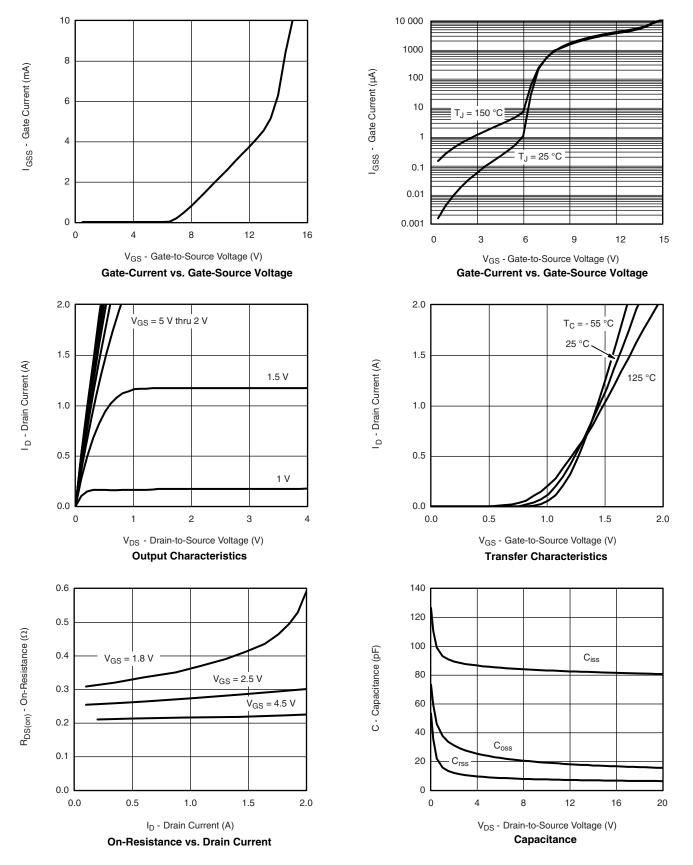
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	N-Ch	0.45		1	v
		$V_{DS} = V_{GS}, I_{D} = -100 \ \mu A$	P-Ch	- 0.45		- 1	v
Gate-Body Leakage	I _{GSS}	N 0.474 45.4	N-Ch			± 1	μA mA
		$V_{DS} = 0 V, V_{GS} = \pm 4.5 V$	P-Ch			± 1	
		<u> </u>	N-Ch			± 10	
		$V_{DS} = 0 V, V_{GS} = \pm 12 V$	P-Ch			± 10	
Zero Gate Voltage Drain Current		V _{DS} = 16 V, V _{GS} = 0 V	N-Ch			1	
		V _{DS} = - 16 V, V _{GS} = 0 V	P-Ch			- 1	
	IDSS	$V_{DS} = 16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 85 ^{\circ}\text{C}$	N-Ch			5	μA
		$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 85 ^{\circ}\text{C}$	P-Ch			- 5	
On-State Drain Current ^a		$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}$	N-Ch	2			A
	I _{D(on)}	$V_{DS} \le$ - 5 V, V_{GS} = - 4.5 V	P-Ch	- 2			
Drain-Source On-State Resistance ^a		V _{GS} = 4.5 V, I _D = 1.13 A	N-Ch		0.220	0.280	
		V _{GS} = - 4.5 V, I _D = - 0.88 A	P-Ch		0.400	0.490	
	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 0.99 \text{ A}$	N-Ch		0.281	0.360	
		V _{GS} = - 2.5 V, I _D = - 0.71 A	P-Ch		0.610	0.750	Ω
		V _{GS} = 1.8 V, I _D = 0.20 A	N-Ch		0.344	0.450	
		V _{GS} = - 1.8 V, I _D = - 0.20 A	P-Ch		0.850	1.10	
Forward Transconductance ^a		V _{DS} = 10 V, I _D = 1.13 A	N-Ch		2.6		S
	9 _{fs}	V _{DS} = - 10 V, I _D = - 0.88 A	P-Ch		1.5		
	N	$I_{\rm S} = 0.48$ V, $V_{\rm GS} = 0$ V	N-Ch		0.8	1.2	v
Diode Forward Voltage ^a	V _{SD}	I _S = - 0.48 V, V _{GS} = 0 V	P-Ch		- 0.8	- 1.2	
Dynamic ^b		·					
Total Gate Charge	Qg		N-Ch		0.65	1	nC
Total Gate Charge	Чg	N-Channel	P-Ch		1.2	1.8	
Gate-Source Charge	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 1.13 \text{ A}$	N-Ch		0.2		
	Qgs	P-Channel	P-Ch		0.3		
Gate-Drain Charge	0	$V_{DS} = -10$ V, $V_{GS} = -4.5$ V, $I_{D} = -0.88$ A	N-Ch		0.23		
	Q _{gd}		P-Ch		0.3		
Turn-On Delay Time	t _{d(on)}		N-Ch		45	70	
		N-Channel	P-Ch		150	230	- ns
Rise Time	t _r	V_{DD} = 10 V, R_L = 20 Ω	N-Ch		85	130	
		$\rm I_D \cong 0.5$ A, $\rm V_{GEN}$ = 4.5 V, $\rm R_g$ = 6 Ω	P-Ch		480	720	
Turn-Off Delay Time	t _{d(off)}	P-Channel	N-Ch		350	530	
		V_{DD} = - 10 V, R_L = 20 Ω	P-Ch		840	1200	
	t _f	$I_D \cong$ - 0.5 A, V_{GEN} = - 4.5 V, R_g = 6 Ω	N-Ch		210	320	
Fall Time			P-Ch		850	1200	

Notes:

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

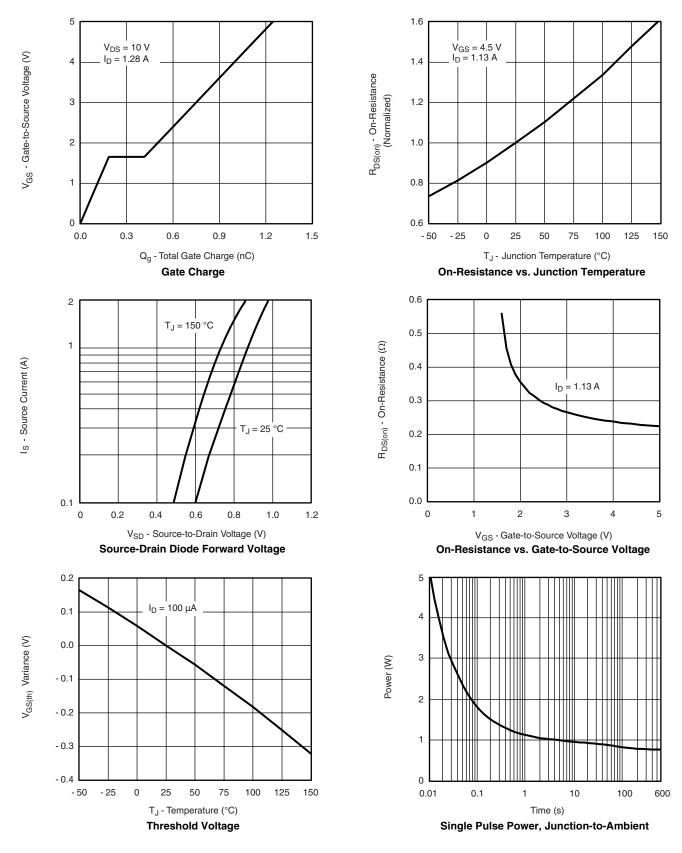
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


For more information please contact: pmostechsupport@vishay.com

Document Number: 71416 S12-1258-Rev. E, 21-May-12

Si1563EDH Vishay Siliconix

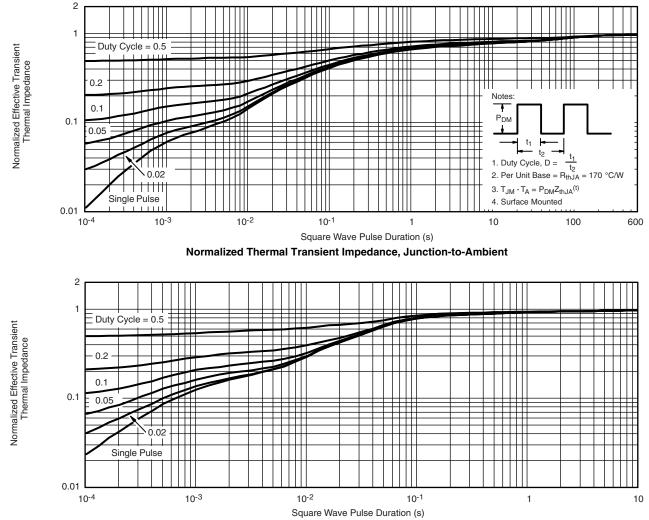
N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Document Number: 71416 S12-1258-Rev. E, 21-May-12

For more information please contact: pmostechsupport@vishay.com

Vishay Siliconix

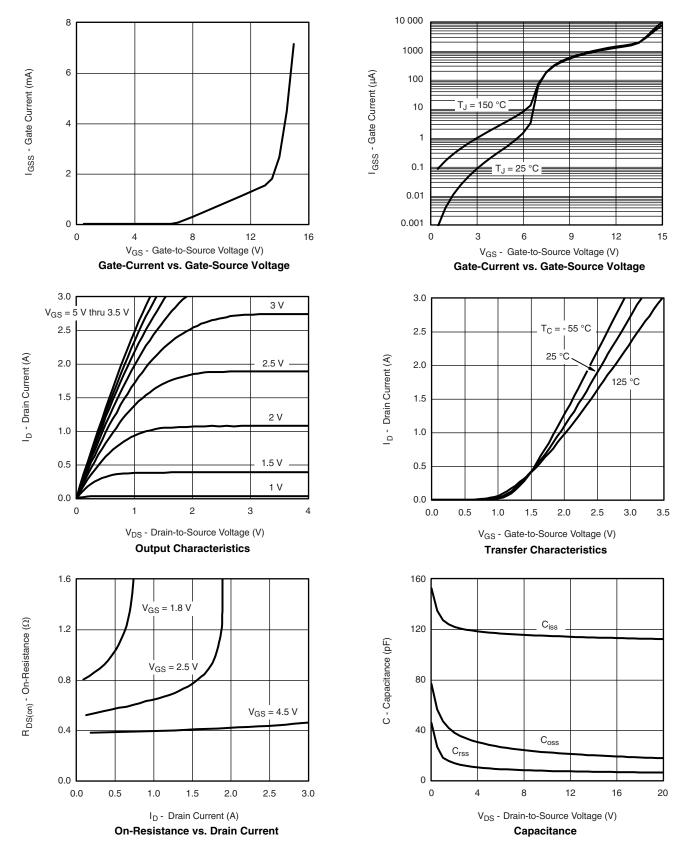
N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



For more information please contact: pmostechsupport@vishay.com

Document Number: 71416 S12-1258-Rev. E, 21-May-12

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

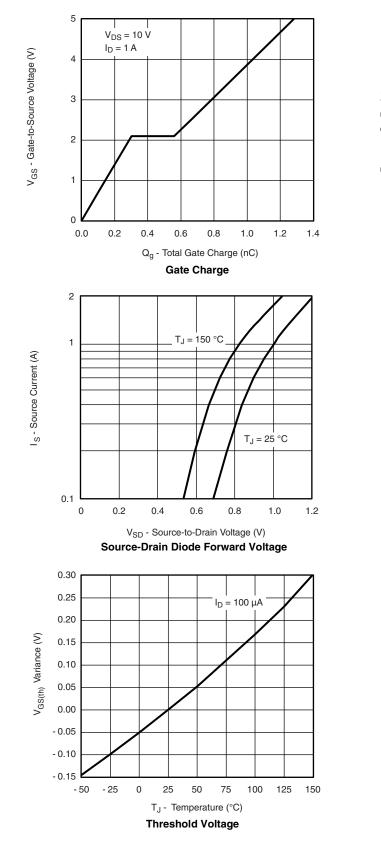

Normalized Thermal Transient Impedance, Junction-to-Foot

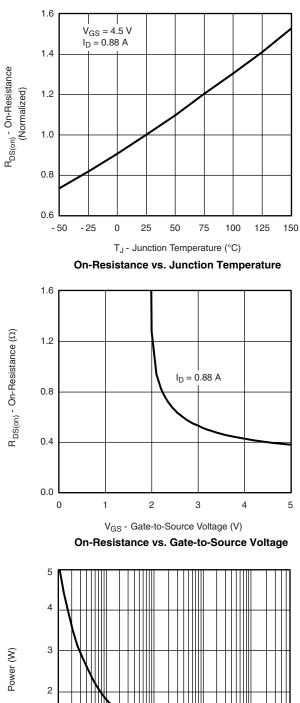
5

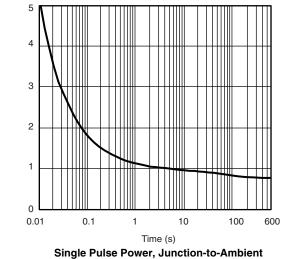
Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

www.vishay.com

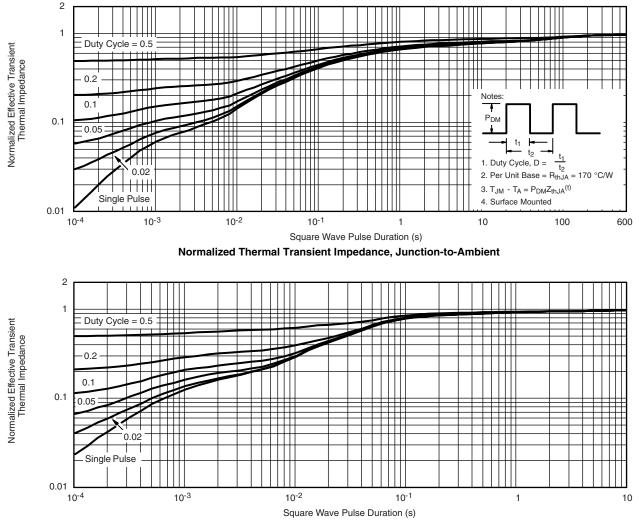

For more information please contact: pmostechsupport@vishay.com


Document Number: 71416 S12-1258-Rev. E, 21-May-12



Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Document Number: 71416 S12-1258-Rev. E, 21-May-12

For more information please contact: pmostechsupport@vishay.com

Vishay Siliconix

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71416.

For more information please contact: pmostechsupport@vishay.com

Document Number: 71416 S12-1258-Rev. E, 21-May-12

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.